

SCHOOL OF ENGINEERING AND

TECHNOLOGY

Bachelor of Science (Honours) Computer Science
B.Sc (H) (CS)

Programme Code:72

2020-23

Approved in the 23rd Meeting of Academic Council Held on 23 June 2020

Registrar

K.P. Mangalam University'
Sohna Road, Gurugram, (Haryana)

SCHOOL OF ENGINEERING AND

TECHNOLOGY

Bachelor of Science (Honours) Computer Science
B.Sc (H) (CS)

Programme Code:72

2020-23

Approved in the 23rd Meeting of Academic Council Held on 23 June 2020

PREFACE

Computer science is a discipline that spans theory and practice and it requires thinking both in abstract terms and in concrete terms. In the last one decade the discipline of computer science has made huge strides. Many problems in science, engineering, health care, business, and other areas can be solved effectively with computers, but finding a solution requires both computer science expertise and knowledge of the particular application domain. "Data is new oil" credited to Mathematician Clive Humby, has gained more significance with emerging technologies like Artificial Intelligence, Machine Learning and Data Science.

In consultation with Deans, Faculty Members, Industry Experts, and University Alumni, the Academic council constituted department-wise committees to draft the curriculum of B.Sc. (H) Computer Science. The primary emphasis is to designing a course that combines courses from the disciplines of Statistics, Mathematics, and Computer Science and prepares students for careers in Big Data Science & Analytics.

The B.Sc.(H) Computer Science with IBM program is spread over three years in six semesters. The total numbers of credits are 148. The program is designed as per LOCF guidelines laid by UGC and run in collaboration with IBM. The core course includes specialized courses like clean coding with Python, Big Data Analytics and Data Warehouse and Data Mining. The courses contents and electives are aims at laying a strong foundation of CS at an early stage of the career along with two other subjects such as Physics, Mathematics, Electronics, Statistics etc. The departmental Specific elective addresses the need to familiarize students with emerging areas in computer science. The laboratories, besides supplementing the theory course should also expose the student to the use of the latest software tools.

The present curriculum focuses on unique interdisciplinary educational experience allows students the opportunity to acquire the broad base of knowledge and skills which employers are seeking. The program is designed to attract international students making K.R. Mangalam is a global place of higher learning and research in engineering and technology.

Content	Page No.
About K.R Mangalam University	4
About School of Engineering and Technology	5
School Vision	5
School Mission	5
Programs offered by School	6
Career Options	6
Class Timings	6
Program Duration- B.Sc. (H) Computer Science	6
Scheme of Studies and Syllabi- B.Sc. (H) Computer Science	6

About K.R Mangalam University

The K.R. Mangalam Group has made a name for itself in the field of education. The K.R. Mangalam story goes back to the chain of schools that offered an alternative option of world-class education, pitching itself against the established elite schools, which had enjoyed a position of monopoly till then. Having blazed a new trail in school education, the focus of the group was aimed at higher education.

K.R. Mangalam University is the fastest-growing higher education institute in Gurugram, India. K. R. Mangalam University was established under the Haryana Private University Act 2006, received the approval of Haryana Legislature vide Amendment Act # 36 of 2013 and consent of the Hon'ble Governor of Haryana on 11th April 2013, which was published in the Gazette notification vide Leg. No.10/2013, dated 3rd May 2013.

Since its inception in 2013, the University has been striving to fulfil its prime objective of transforming young lives through ground-breaking pedagogy, global collaborations, and world-class infrastructure. Resources at K.R Mangalam University have been continuously upgraded to optimize opportunities for the students. Our students are groomed in a truly interdisciplinary environment where they grow up with integrative skills through interaction with students from engineering, social sciences, management and other study streams.

K.R Mangalam University is unique because of its:

- i. Enduring legacy of providing education to high achievers who demonstrate leadership in diverse fields.
- ii. Protective and nurturing environment for teaching, research, creativity, scholarship, social and economic justice.

Objectives

- i. To impart undergraduate, post graduate and doctoral education in identified areas of higher education.
- ii. To undertake research programmes with industrial interface.
- iii. To integrate its growth with the global needs and expectations of the major stake holders through teaching, research, exchange & collaborative programmes with foreign, Indian Universities/Institutions and MNCs.
- iv. To act as a nodal center for transfer of technology to the industry.
- v. To provide job oriented professional education to the Indian student community with particular focus on Haryana.

About School of Engineering & Technology (SOET)

School of Engineering and Technology (SOET), K.R. Mangalam University is dedicated to fostering innovation, excellence, and advancement in engineering and technology. Empowering the new generation of change-makers by imparting exceptional understanding and intellect to facilitate the creation of highly sophisticated futuristic solutions. Our well-qualified academicians, accomplished researchers and industry insiders are focused on imparting their extensive knowledge and expertise to students through various lectures, workshops, industrial visits, projects, and competitions throughout the year ensuring that students receive a comprehensive education that blends theory with practical application.

These programs offered at SOET have the distinct objective of equipping the students with knowledge, skills and attitudes in engineering and technology, to make them capable of successfully meeting the present requirements and future challenges in the engineering profession. SOET brings together outstanding academics, industry professionals, and experienced researchers to deliver a unique hands-on and multi-disciplinary learning experience.

The curriculum of programs has been designed to cater to the ever changing needs and demands of the industry. The curriculum is regularly updated. The school has best infrastructure including domain-specific labs. SOET aims to provide exposure to the principles and practices of Design / Developments and Projects in the area of engineering. SOET is offering Ph.D. programs also.

School Vision

To create, disseminate, and apply knowledge in science and technology to meet the higher education needs of India and the global society, To serve as an institutional model of excellence in scientific and technical education characterized by integration of teaching, research and innovation.

School Mission

M1: To create an environment where teaching and learning are prioritized, with all support activities being held accountable for their success.

M2: To strengthen the institution's position as the school of choice for students across the State & Nation.

M3: To promote creative, immersive, and lifelong learning skills while addressing societal concerns.

M4: To promote co- and extra-curricular activities for overall personality development of the students.

M5: To promote and undertake all-inclusive research and development activities.

M6: To instill in learners an entrepreneurial mindset and principles.

M7: Enhance industrial, institutional, national, and international partnerships for symbiotic relationships.

M8: To help students acquire and develop knowledge, skills and leadership qualities of the 21st Century and beyond.

Programmes offered by the School

School offers undergraduate B. Tech Program, B.Sc. (Hons) Program, postgraduate M. Tech Program, and Doctoral Program. All these programs are designed to impart scientific knowledge to the students and provide theoretical and practical training in their respective fields.

B.Sc.(H) Computer Science with IBM

This program is designed to provide a sound knowledge of computing principles and applications in scientific and engineering domains. It develops the ability to analyze problems and generate solutions in the areas of computing. It also aims to provide exposure to the principles and practices of design and development of computing system. An initiative to make the teaching-learning framework better and enhance the student learning outcomes, the School has taken a thoughtful step by introducing the concept of Learning Outcome Based Curriculum Framework (LOCF) and Choice Based Credits System (CBCS) system.

Eligibility Criteria: The student should have passed the 10+2 examination conducted by the Central Board of Secondary Education or equivalent examination from a recognized Board with mathematics as one of the subjects and with an overall aggregate of 50% or more.

Course Outline: Python Programming / Operating Systems/ Computer networks / Mobile Application Development / Databases / Big Data Analytics / Artificial Intelligence.

Career Options: Opportunities exist in IT industry, freelancers, Data Scientist, AI/ ML Personnel. **Program Duration:** The maximum completion period of the B.Sc. (H) Computer Science programme offered by the University shall be three years.

Class Timings

The classes will be held from Monday to Friday from 9:10 am to 04:00 pm.

Three Years Bachelor of Science (Honours) Computer Science Program at a Glance

	Semester I	Semester II	Semester III	Semester IV	Semester V	Semester VI	Total
Course	8	10	9	8	11	9	55

Credit	26	25	24	20	25	28	148

Scheme of Studies as per Learning Outcome Based Curriculum Framework (LOCF) and Choice Based Credit System (CBCS)

SEMESTER I

S.N O		COURSE CODE	COURSE TITLE	L	Т	P	C
1	SE	UCCS 155A	Communication Skills	4	0	0	4
2	SE	UCDM301A	Disaster Management	3	0	0	3
3	SE	UCES125A	Environmental Studies	3	0	0	3
4	OE	ETMA163A	GENERIC ELECTIVE -I (Basics of Mathematics)	4	2	0	6
5	SE	ETMC121A	Management Thoughts and Applications	3	0	0	3
6	СС	ETCS103A	Programming for Problem Solving	4	0	0	4
7	SE	ETCS153A	Programming for Problem Solving Lab	0	0	2	1
8			ONLINE COURSE - I (Data Science from Swayam)	2	0	0	2
				23	2	2	26

SEMESTER II

S.N O		COURSE CODE	COURSE TITLE	L	T	P	C
1	СС	ETCS308A	Web Technologies	3	0	0	3
2	СС	ETCS307A	DATABASE MANAGEMENT SYSTEMS	3	1	0	4
3	СС	ETCS112A	Object Oriented Programming	3	1	0	4
4	SE	ETPH112A	ELECTRICITY AND MAGNETISM(GE-II)	4	2	0	6

5	SE	ETCA365A	Linux Environment Lab	0	0	2	1
6	SE	ETCS 355A	DATABASE MANAGEMENT SYSTEMS LAB	0	0	2	1
7	SE	ETCS166A	OBJECT ORIENTED PROGRAMMING LAB	0	0	2	1
	OE		OPEN ELECTIVE	4			6
				17	4	8	25

SEMESTER III

1	СС	ETCS304A	COMPUTER NETWORKS	4	1	-	4
2	СС	ETCS211A	OPERATING SYSTEMS	4	1	-	4
3	СС	ETEC 210A	DIGITAL ELECTRONICS	4	1	-	4
4	СС	ETCS219A	FOUNDATION OF COMPUTER SYSTEMS	3	1	-	4
5	СС	ETCS217A	DATA STRUCTURES	4	1	-	4
6	SE	ETCS 257A	DATA STRUCTURES LAB	-	1	2	1
7	SE	ETCS 255A	OPERATING SYSTEMS LAB	-	1	2	1
8	SE	ETCS365A	COMPUTER NETWORKS LAB	-	1	2	1
9	SE	ETEC 256A	DIGITAL ELECTRONICS LAB	-	-	2	1
		19	2	8	24		

SEMESTER IV

1	СС	ETCS222A	COMPUTER ORGANIZATION & ARCHITECTURE	4	-	-	4
2	СС	ETCS 220A	ANALYSIS AND DESIGN OF ALGORITHMS	4	-	-	4
3	SE	ETEC218A	COMMUNICATION SYSTEM	3	1	-	4

4	СС	ETCS202A	SOFTWARE ENGINEERING	4	-	-	4
5	SE	ETCS252A	SOFTWARE ENGINEERING LAB	-	-	2	1
6	SE	ETCS260A	Computer Organization & Architecture Lab	-	-	2	1
7	SE	ETCS262A	Analysis and Design of Algorithms Lab	-	-	2	1
8	SE	ETEC258A	COMMUNICATION SYSTEM LAB	-	-	2	1
				15	1	8	20

SEMESTER V

1	СС	ETCS 214A	Theory of Computation	3	1	-	4
2	СС	ETCS 323A	Java Programming	4	-	-	4
3	СС	ETCS 206A	COMPUTER GRAPHICS	4	-	-	4
4	SE	ETCS361A	Java Programming Lab	-	-	2	1
5	SE	ETCS258A	COMPUTER GRAPHICS LAB	-	-	2	1
6	SE	ETCS301A	Programming in MATLAB	2	-	-	2
7	SE	ETCS350A	Programming in MATLAB LAB	1	-	2	1
8			DSE -1	3	-	-	3
9			DSE -1 LAB	1	-	2	1
10			DSE – 2	3	-	-	3
11			DSE - 2 LAB	1	-	2	1
			TOTAL	22	1	1 0	25

(i)	CC	ETCS409A	Advanced Computer Networks	3	-	1	3

	SE	ETCS452A	Advanced Computer Networks Lab	-	-	2	1
(;;)	CC	ETCS410A	Mobile and Wireless Communication	3	1	1	3
(ii)	SE	ETCS453A	Mobile and Wireless Communication Lab	-	-	2	1
(:::)	CC	ETCS411A	Machine Learning	3	-	-	3
(iii)	SE	ETCS455A	Machine Learning Lab	1	1	2	1

(i)	CC	ETCS517A	Soft Computing	3	1	1	3
(i)	SE	ETCS559A	Soft Computing Lab	-	ı	2	1
(ii)	CC	ETCS519A	Big Data Analytics and Visualization	3	1	ı	3
(ii)	SE	ETCS563A	Big Data Analytics and Visualization	-	ı	2	1
(;;;)	CC	ETCS515A	Ethical Hacking	3	1	ı	3
(iii)	SE	ETCS557A	Ethical Hacking Lab	-	- 1	2	1

SEMESTER VI

1	СС	ETCA324A	.Net FRAMEWORK	4	-	1	4
2	СС	ETC520A	Internet Technologies	3	1	-	3
3	СС	ETCS401A	Artificial Intelligence	4	1	-	4
4	SE	ETCS451A	Artificial Intelligence Lab	1	1	2	1
5	SE	ETCA364A	.Net FRAMEWORK LAB	1	ı	2	1
6	CC	ETCS519A	BLOCKCHAINS	3	1	1	4
7			DSE -3	4	1	ı	4
8			DSE -3 LAB	1	ı	2	1
9	SE	ETCS464A	MAJOR PROJECT	1	1	1	6
			TOTAL	18	1	6	28

		TOTAL CREDITS	148
--	--	---------------	-----

(i)	CC	ETCS422A	Cloud Computing	4	-	-	4
(i)	SE	ETCA362A	Cloud Computing Lab	-	-	2	1
(ii)	CC	ETCS424A	Data Warehousing and Data Mining	4	1	1	4
(ii)	SE	ETCS463A	Data Warehousing and Data Mining Lab	1	•	2	1
(iii	CC	ETCS421A	Internet of Things	4	-	-	4
)	SE	ETCS457A	Internet of Things Lab	-	-	2	1

Semester I

UCCS 155A	Communication Skills	L	T	P	С
Version 1.0		4	0	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. Understand the basics of Grammar to improve written and oral communication skills.
- 2. Understand the correct form of English with proficiency
- 3. Improve student's personality and enhance their self-confidence.
- 4. Improve professional communication.
- 5. Enhance academic writing skills.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the basics of Grammar to improve written and oral communication skills
- CO2. Understand the correct form of English with proficiency
- CO3. Improve student's personality and enhance their self-confidence

CO4. Improve professional communication

CO5. Enhance academic writing skills

Catalog Description

This learning program with its practice-based learning tasks will facilitate the learners to enhance their communication skills in a modern and globalized context, enhance their linguistic and communicative competence and hone their interpersonal skills.

Course Content

UNIT I 10 lecture hours

Introduction to Communication: Importance of Communication Skills, Meaning, Forms & Types of Communication; Process of Communication; Principles of Effective Communication/7Cs, Barriers in Communication (Interpersonal, Intrapersonal and Organizational).

UNIT II 10 lecture hours

Academic Writing: Précis (Summary – Abstract – Synopsis – Paraphrase – Précis: Methods), Letter & Résumé (Letter Structure & Elements – Types of letter: Application & Cover - Acknowledgement – Recommendation – Appreciation – Acceptance – Apology – Complaint – Inquiry). Writing a proposal and synopsis. Structure of a research paper. Citations and plagiarism.

UNIT III 10 lecture hours

Technology-Enabled Communication: Using technology in communication tasks, E-mails, tools for constructing messages, Computer tools for gathering and collecting information; Different virtual medium of communication.

UNIT IV 10 lecture hours

Building Vocabulary: Word Formation (by adding suffixes and prefixes); Common Errors; Words Often Confused; One word substitution, Homonyms and Homophones; Antonyms & Synonyms, Phrasal Verbs, Idioms & Proverbs (25 each); Commonly used foreign words(15 in number);

UNIT V 10 lecture hours

Personality Development: Etiquettes& Manners; Attitude, Self-esteem & Self-reliance; Public Speaking; Work habits (punctuality, prioritizing work, bringing solution to problems), Body Language: Posture, Gesture, Eye Contact, Facial Expressions; Presentation Skills/ Techniques.

Text book [TB]:

1. Kumar, Sanjay and Pushplata. Communication Skills. Oxford University Press, 2015.

Reference Books/Materials

- 1. Mitra, Barun K. Personality Development and Soft Skills. Oxford University Press, 2012.
- 2. Tickoo, M.L., A. E.Subramanian and P.R.Subramaniam. Intermediate Grammar, Usage and Composition. Orient Blackswan, 1976.
- 3. Bhaskar, W.W.S., AND Prabhu, NS., "English Through Reading", Publisher: MacMillan, 1978
- 4. Business Correspondence and Report Writing" -Sharma, R.C. and Mohan K. Publisher: Tata McGraw Hill1994
- 5. Communications in Tourism & Hospitality-Lynn Van Der Wagen, Publisher: HospitalityPress
- 6. Business Communication-K.K.Sinha
- 7. Essentials of Business Communication By Marey Ellen Guffey, Publisher: ThompsonPress
- 8. How to win Friends and Influence People By Dale Carnegie, Publisher: Pocket Books
- 9. Basic Business Communication By Lesikar&Flatley, Publisher Tata McGraw Hills
- 10. Body Language By Allan Pease, Publisher SheldonPress

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the basics of Grammar to improve written and oral communication skills	PO10
CO2	Understand the correct form of English with proficiency	PO10
CO3	Improve student's personality and enhance their self-confidence	PO12
CO4	Improve professional communication.	PO10
CO5	Enhance academic writing skills	PO10

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
			r						t			l	i	k				
		n		e	0	o d		n	ι h	n d	0 m	r	f	i	e	r	t h	n
		g i	o b	s i	n d			v i	i	i	m	0		1	S	o f	i	a 1
						e				l	m	j	e		t			
		n	1	g	u	r	n	r	c	V :	u	e	1	1	P	e	c	У
		e	e	n	c	n	_	0	S	i	n ·	С	1	S	r	S	S	s .
		e	m	/	t ·	t		n		d	i	t	О		a	S .		i
		r	a	d	i	О		m		u	С	m	n		c	i		S
		i	n	e	n	0		e		a	a	a	g		t .	О		
		n	a	V	V	1		n		1	t .	n	L		i	n		
		g	1	e	e	u		t		О	i	a	e		С	R		
		K	У	1	S	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a		n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		у	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	c			i				a				i		
				t	О			1				n				e		
				i	m			i				С				s		
				0	p			t				e						
				n	1			y										
				s	e			3										
					x													
					p													
					r													
					0 b													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	РО	P	P	P	P	P	РО	РО	РО				PS	PS
e	e Title	O1	O2	03	4	O 5	O6	O7	O8	09	10	11	12	PS	PS	PS	O4	O5
Code						5	- 50	٠,	- 55					O1	O2	O3]	

	Com									
UCCS	munic									
155A	ation					3	3		2	
	Skills									

1=weakly mapped

2= moderately mapped

3=strongly mapped

UCDM301	Disaster Management	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objective:

- **1.** To increase the knowledge and understanding of the disaster phenomenon, its different contextual aspects, impacts and public health consequences.
- **2.** Understanding of the International Strategy for Disaster Reduction (UN-ISDR) and to increase skills and abilities for implementing the Disaster Risk Reduction (DRR) Strategy.
- **3.** To ensure skills and abilities to analyze potential effects of disasters and of the strategies and methods to deliver public health response to avert these effects.
- 4. To ensure skills and ability to design, implement and evaluate research on disaster.

Course Outcomes:

After completing the program, the student will able to understand

- CO1. Capacity to describe, analyze and evaluate the environmental, social, cultural, economic, legal and organizational aspects influencing vulnerabilities and capacities to face disasters.
- CO2. The course examines disaster profile of our country and illustrates the role played by various

- governmental and non-governmental organizations & its effective management.
- CO3. It also acquaints learners with the existing legal framework for disaster management.
- CO4. Capacity to analyze and evaluate research work on the field of emergencies and disaster while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.

Catalog Description:

This course incorporates different types of disasters so that students are well aware of the circumstances around them. We have included one project in the syllabus so that they can thoroughly study the pre & post disastrous situations as well as the role of society in these difficult situations.

Course Content

Unit I: 8 lecture hours

Introduction to Disasters: Concept and definitions- Disaster, Hazard, vulnerability, resilience, and risks.

Different Types of Disaster: Causes, effects and practical examples for all disasters.

- Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides etc
- > Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster, Epidemic and Biological Disasters, Accidents (Air, Sea, Rail & Road), Structural failures (Building and Bridge), War & Terrorism etc.

Unit II: 8 lecture hours

Disaster Preparedness and Response Preparedness

- Disaster Preparedness: Concept and Nature
- > Disaster Preparedness Plan
- > Prediction, Early Warnings and Safety Measures of Disaster.
- ➤ Role of Information, Education, Communication, and Training, Role of Government, International and NGO Bodies.
- ➤ Role of IT in Disaster Preparedness
- > Role of Engineers on Disaster Management.
- > Relief and Recovery
- Medical Health Response to Different Disasters

Unit III: 6 lecture hours

Rehabilitation, Reconstruction and Recovery

- > Reconstruction and Rehabilitation as a Means of Development.
- > Damage Assessment
- > Post Disaster effects and Remedial Measures.
- > Creation of Long-term Job Opportunities and Livelihood Options,
- > Disaster Resistant House Construction
- > Sanitation and Hygiene
- > Education and Awareness,
- > Dealing with Victims' Psychology,
- ➤ Long-term Counter Disaster Planning
- > Role of Educational Institute.

Unit IV: 10 lecture hours

Disaster Management in India

> Disaster Management Act, 2005:

Disaster management framework in India before and after Disaster Management Act, 2005, National Level Nodal Agencies, National Disaster Management Authority

> Liability for Mass Disaster

- Statutory liability
- Contractual liability
- Tortiousliability
- Criminal liability
- Measure of damages

> Epidemics Diseases Act, 1897: Main provisions, loopholes.

➤ **Project Work**: The project/ field work is meant for students to understand vulnerabilities and to work on reducing disaster risks and to build a culture of safety. Projects must be conceived based on the geographic location and hazard profile of the region where the institute is located.

Reference Books:

• Government of India, Department of Environment, Management of Hazardous Substances Control

18

- Act and Structure and Functions of Authority Created There under.
- Indian Chemical Manufacturers' Association & Loss Prevention Society of India, Proceedings of the National Seminar on Safety in Road Transportation of Hazardous Materials: (1986).
- Author Title Publication Dr. Mrinalini Pandey Disaster Management Wiley India Pvt. Ltd.
- Tushar Bhattacharya Disaster Science and Management McGraw Hill Education (India) Pvt. Ltd.
- Jagbir Singh Disaster Management: Future Challenges and Opportunities K W Publishers Pvt. Ltd.
- J. P. Singhal Disaster Management Laxmi Publications.
- Shailesh Shukla, ShamnaHussain Biodiversity, Environment and Disaster Management Unique Publications
- C. K. Rajan, NavalePandharinath Earth and Atmospheric Disaster Management: Nature and Manmade B S Publication
- IndianlawInstitute(UpendraBaxiandThomasPaul(ed.),MassDisastersandMultinationalLiability: The Bhopal Case(1986)
- IndianLawInstitute,UpendraBaxi(ed.),EnvironmentProtectionAct:AnAgendaforImplementation (1987)
- Asian Regional Exchange for Prof. Baxi., Nothing to Lose But our Lives: Empowerment to Oppose
- Industrial Hazards in a Transnational world(1989)
- Guru dip Singh, Environmental Law: International and National Perspectives(1995), Lawman (India)Pvt.Ltd.
- Leela Krishnan, P, The Environmental Law in India, Chapters VIII,IX and X(1999),Butter worths, New Delhi

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	CAT	Mid Term	Attendance/ Class	End Term
		Exam	performance	Exam
Weightage (%)	20	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Capacity to describe, analyze and evaluate the environmental,	PS02

	social, cultural, economic, legal and organizational aspects influencing vulnerabilities and capacities to face disasters.	
CO2	The course examines disaster profile of our country and illustrates the role played by various governmental and non-governmental organizations & its effective management.	P03
СОЗ	It also acquaints learners with the existing legal framework for disaster management.	P012
CO4	Capacity to analyze and evaluate research work on the field of emergencies and disaster while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.	P06

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	S	n	d		v	h	d	m	0	f	i	S	0	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r		r	c	v	u	e	_	1	P	e	С	y
		e	e	n	c	n		0	s	i	n	С	1	s	r	S	s	S
		e	m	/	t	t	_	n		d	i	t	О		a	S		i
		r	a	d	i	О		m		u	c	m	n		С	i		S
		i	n	e	n	О		e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K	у	1	S	S	a	a		r	0	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		w	S	m	g	e		S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		у	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	c			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	РО	P	P	P	P	P	РО	РО	РО				PS	PS
e	e Trial	0	0	0	4	O 5	0	0	0	0	10	11	12	PS	PS	PS	04	O5
Code	Title	1	2	3)	6	7	8	9				O1	O2	O3		
															1		1	1

	Disas										
UCD	ter							2			
M30	Mana		2		3			2	2		
1A	geme										
	nt										

1=weakly mapped

2= moderately mapped

3=strongly mapped

UCES125A	Environmental Studies	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics of Environment				
Co-requisites					

Course Objectives

- 1. To aware the students about the environment.
- 2. To learn the students concepts and methods from ecological and physical sciences and their application in environmental problem solving.
- 3. To think across and beyond existing disciplinary boundaries, mindful of the diverse forms of knowledge and experience that arises from human interactions with the world around them.
- 4. Communicate clearly and competently matters of environmental concern and understanding to a variety of audiences in appropriate forms.

Course Outcomes

On completion of this course, the students will be able to

CO1. To comprehend and become responsive regarding environmental issues.

- CO2. Acquire the techniques to protect our mother earth, as without a clean, healthy, aesthetically beautiful, safe and secure environment no specie can survive and sustain.
- CO3. Enable the students to discuss their concern at national and international level with respect to formulate protection acts and sustainable developments policies.
- CO4.To know that the rapid industrialization, crazy consumerism and over-exploitation of natural resources have resulted in degradation of earth at all levels.
- CO5. Become consciousness about healthy and safe environment.

Catalog Description

This course imparts the basic concepts of environment which enable them to solve basic problems related to their surroundings. This course helps them to get an idea adverse effect of industrialization, population and degradation of natural resources on the environment. The course introduces the concepts of renewable and non-renewable resources.

Course Content

UNIT I 10 Lectures

Environment and Natural Resources:

Multidisciplinary nature of environmental sciences; Scope and importance; Need for public awareness. Land resources; land use change; Land degradation, soil erosion and desertification.

Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal populations.

Water: Use and over-exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter-state).

Energy resources: Renewable and non-renewable energy sources, use of alternate energy sources, growing energy needs, case studies.

UNIT II 10 Lectures

Ecosystems and Biodiversity:

Ecosystem: Definition and Structure and function of ecosystem; Energy flow in an ecosystem: food chains, food webs and ecological succession.

Case studies of the following ecosystems:

- a) Forest ecosystem
- b) Grassland ecosystem
- c) Desert ecosystem
- d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; Biodiversity patterns and global biodiversity hot spots; India as a mega-biodiversity nation; Endangered and endemic species of India; Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity;

Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic and Informational value.

UNIT III 10 Lectures

Environmental Policies:

Environmental pollution: types, causes, effects and controls; Air, water, soil and noise pollution Nuclear hazards and human health risks; Solid waste management: Control measures of urban and industrial waste; Pollution case studies.

Sustainability and sustainable development; Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture; Environment Laws: Environment Protection Act; Air (Prevention & Control of Pollution) Act; Water (Prevention and control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act; Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian context.

UNIT IV 10 Lectures

Human Communities and the Environment and Field work:

Human population growth: Impacts on environment, human health and welfare; Resettlement and rehabilitation of project affected persons; case studies; Disaster management: floods, earthquake, cyclones and landslides; Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan; Environmental ethics: Role of Indian and other religions and cultures in environmental conservation; Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi).

Visit to an area to document environmental assets: river/ forest/ flora/fauna, etc.

Visit to a local polluted site-Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds and basic principles of identification. Study of simple ecosystems-pond, river, Delhi Ridge, etc.

Text Books

1. Kaushik and Kaushik, Environmental Studies, New Age International Publishers (P) Ltd. New Delhi.

Reference Books/Materials

- 1. A.K. De, Environmental Chemistry, New Age International Publishers (P) Ltd. New Delhi.
- 2. S.E. Manahan, Environmental Chemistry, CRC Press.
- 3. S.S Dara and D.D. Mishra, Environmental Chemistry and Pollution Control, S.Chand& Company Ltd, New Delhi.
- 4. R. Gadi, S. Rattan, S. Mohapatra, Environmental Studies Kataria Publishers, New Delhi.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam

Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	The learners will be able to comprehend and become responsive regarding environmental issues.	PO7						
CO2	Students will acquire the techniques to protect our mother earth, as without a clean, healthy, aesthetically beautiful, safe and secure environment no specie can survive and sustain.	PO8						
соз	It enables the students to discuss their concern at national and international level with respect to formulate protection acts and sustainable developments policies.	PO10						
CO4	Students come to know that the rapid industrialization, crazy consumerism and over-exploitation of natural resources have resulted in degradation of earth at all levels.	PO6						
CO5	Students become consciousness about healthy and safe environment.	PO7						

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	О	О	h	n	t	n	O	r	i	k	e	r	t	n
		g	О	S	n	d	e	V	h	d	m	О	f	i	S	О	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r		r	С	V	u	e	-	1	P	e	С	У
		e	e	n	С	n	_	О	S	i.	n	С	1	S	r	S	S	S
		e	m		t	t		n		d	i	t	О		a	S .		i
		r :	a	d	i	0		m		u	c	m	n		c	i		S
		i	n	e	n	0 1		e		a 1	a	a	g L		t i	0		
		n	a 1	V	v e			n t		1	t i	n	e		c	n R		
		g K	y	e 1	s	u s		a		o r	0	a	a		e	e		
		n	S	0	t	a		n		t	n	g e	r		s	s		
		0	i	p	i	g		d		e		m	n		5	p		
		W	S	m	g	e		S		a		e	i			0		
		1		e	a		0	u		m		n	n			n		
		e		n	t		c	s		w		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				s	S		у	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					0													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	Р	P	P		P	P	P	P	P								
e	e	0	0	0	PO 4	О	0	О	0	0	PO 10	PO 11	PO 12	PS	PS	PS	PS O4	PS O5
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3	04	US

	Enviro										2	
UCES	nment											
125A	al			2	3	3	3			1		
123A	Studie											
	s											

1=weakly mapped

2= moderately mapped

3=strongly mapped.

ETMA163A	Basics of Mathematics	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. Provide the brief idea to students of Complex numbers and its applications
- 2. To understand and learn about the differential calculus and find the curve tracing.
- 3. Deliver a brief knowledge of Matrices and its properties.
- 4. Apply the concept of eigenvalue and eigenvector to find higher power of the matrix.
- 5. Recognize and find the general solution of ordinary differential equation

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand and able to apply the basic concept of complex variable.
- CO2. Recognize and able to apply the concepts of continuity and differentiability for complex functions and solve the analytic function and its properties.
- CO3. Applied the differential calculus method for curve tracing and radios of curvatures.
- CO4. Use the characteristic polynomial to compute the eigenvalues and eigenvectors of a square matrix and use them to Diagonalizable matrices when this is possible.
- CO5. Explain the qualitative long-term behavior of the solutions to an ODE or system of ODE's.
- CO6. Demonstrate knowledge and understanding ordinary differential equations and how they relate to different modeling situations.

Catalog Description

Applied mathematics-I is the mathematical study of basic concepts, principles, and application, relate or unify various disciplines. The core of the program the following principles and their mathematical formulations: complex number and variables, ordinary differential equations, differential calculus and matrices. The concepts of applied mathematics-Iare extremely useful in physics, economics and social sciences, natural sciences, and engineering. Due to its broad range of applications, linear algebra is one of the most widely taught subjects in college-level mathematics. Important objectives of the linear algebra are to develop and strengthen the students' problem-solving skills and to teach them to read, write, speak, and think in the language of mathematics. In particular, students learn how to apply the tools of calculus to a variety of problem situations.

Course Content

Unit I: 10 lecture hours

Determinants: Definition, Minors, Co-

factors, Properties of Determinants, Applications of determinants in finding area of triangle. Matrices: Definition, Types of Matrices, Addition, Subtraction, Scalar Multiplication and Multiplication of Matrices, Adjoint, Inverse, Solution of system of linear equation by Cramer's Rule.

Unit II: 10 lecture hours

Sequence and Series: Introduction, Sequences, Series, Arithmetic Progression (A.P), Geometric Progression (G.P), Relationship Between A. M. and G.M., Sum to N terms of Special Series, Principle of Mathematical Induction.

Unit III: 10lecture hours

Differentiation: Derivative of a function, Derivatives of sum, differences, product, and quotient

of functions, Derivative of polynomial, trigonometric, exponential, logarithmic, inverse

trigonometric and implicit functions, Logarithmic Differentiation, Derivatives of functions in parametric forms, Differentiation by substitution.

Unit IV: 10 lecture hours

Integration: Indefinite integrals, Methods of integration: by substitution, by parts, by partial fractions, Integration of algebraic and transcendentalfunctions.

Text Books

- 1. Kresyzig, "Advanced Engineering Mathematics", John Wiley and Sons.
- 2. Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publication

Reference Books/Materials

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. H.K. Dass, "Advanced Engineering Mathematics", S. Chand & Company.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Understand and able to apply the basic concept of complex variable.	PO1							
CO2	Recognize and able to apply the concepts of continuity and differentiability for complex functions and solve the analytic function and its properties.	PO8							

CO3	Applied the differential calculus method for curve tracing and radios of curvatures.	PO2
CO4	Use the characteristic polynomial to compute the eigenvalues and eigenvectors of a square matrix and use them to Diagonalizable matrices when this is possible.	PO4
CO5	Explain the qualitative long-term behavior of the solutions to an ODE or system of ODE's.	PO3
CO6	Demonstrate knowledge and understanding ordinary differential equations and how they relate to different modeling situations.	PO1

		En	Pro	De	Co	Mo	Th	En	Eth	Ind	Co	Proj	Life	App	Inno
		gin	ble	sig	nd	der	e	vir	ics	ivi	mm	ect	-	licat	vati
		eer	m	n/d	uct	n	en	on		du	unic	man	long	ion	on
		ing	ana	eve	inv	too	gin	me		al	atio	age	Lea	of	and
		Kn	lys	lop	esti	1	eer	nt		or	n	men	rnin	Con	Indu
		ow	is	me	gat	usa	an	an		tea		t	g	cept	stry
		led		nt	ion	ge	d	d		m		and		S	Frie
		ge		of	S		soc	sus		wo		fina			ndly
				sol	of		iet	tai		rk		nce			
				uti	co		У	na							
				ons	mp			bili							
					lex			ty							
					pro										
					ble										
					ms										
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ETMA163 A	Basics of Mathematics	3	3	3	3				1					3	

1=weakly mapped 2= moderately mapped

3=strongly mapped

ETMC 121A	Management Thoughts and Applications	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics of Management				
Co-requisites					

Course Objectives

- 1. The course aims at providing fundamental knowledge and exposure to the concepts, theories and practices in the field of management.
- 2. Observe and evaluate the influence of historical forces on the current practice of management.
- 3. To understand the concept of Managerial function.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Practice the process of management's four functions: planning, organizing, leading, and controlling.
- CO2. Identify and properly use vocabularies within the field of management to articulate one's own position on a specific management issue and communicate effectively with varied audiences.
- CO3. Evaluate leadership styles and motivation theory to anticipate the consequences of each leadership style and motivation theory.
- CO4. Apply course concepts and theory in a practical context.

Catalog Description

This course introduces the student to the management process. The course takes an integrated approach to management by examining the role of the manager from a traditional and contemporary perspective while applying decision-making and critical-thinking skills to the challenges facing managers in today's globally diverse environment. The course examines the techniques for controlling, planning, organizing resources and leading the workforce.

Course Content

Unit I: 10 lecture hours

Introduction: Concept, Nature, Process and Significance of Management; Managerial Levels, Skills, Functions and Roles; Management v/s Administration; Coordination as Essence of Management;

Development of Management Thought: Classical, Neo-Classical, Behavioral, Systems and Contingency Approaches.

Unit II: 12 lecture hours

Planning: Nature, Scope and Objectives of Planning; Types of Plans; Planning Process; Business Forecasting; MBO; Concept, Types, Process and Techniques of Decision-Making; Bounded Rationality.

Organizing: Concept, Nature, Process and Significance; Principles of an Organization; Span of Control; Departmentation; Types of an Organization; Authority-Responsibility; Delegation and Decentralization; Formal and Informal Organization.

Unit III: 12 lecture hours

Staffing: Concept, Nature and Importance of Staffing; Motivating and Leading: Nature and Importance of Motivation; Types of Motivation; Theories of Motivation-Maslow, Herzberg, X, Y and Z; Leadership - Meaning and Importance; Traits of a Leader; Leadership Styles - Likert's Systems of Management; Tannenbaum & Schmidt Model and Managerial Grid.

Unit IV: 8 lecture hours

Controlling: Nature and Scope of Control; Types of Control; Control Process; Control Techniques - Traditional and Modern; Effective Control System.

TEXT BOOK:

1. Koontz, Cannice, and Weihrich (2014). Management- A Global, Innovative and Entrepreneurial Perspective (14th Edition). New Delhi: Tata McGraw Hill Publishing Company.

REFERENCE BOOKS:

- 1. Stoner, Freeman and Gilbert Jr. (2013). Management (6th Edition). New Delhi: Pearson Prentice Hall of India.
- 2. Chopra R. K., Mohan Puneet, & Sharma Vandana (2010). Principles & Practices of Management. New Delhi: Sun India Publication.
- 3. Tripathi P. C. & Reddy P. N. (2015). Principles & Practices of Management (5th Edition). New Delhi: Tata McGraw Hill Publishing House.
- 4. Gupta, C.B (2016). Management Concepts and Practices. New Delhi: Sultan Chand and Sons.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Practice the process of management's four functions: planning, organizing, leading, and controlling	PO3								
CO2	Identify and properly use vocabularies within the field of management to articulate one's own position on a specific management issue and communicate effectively with varied audiences.	PO10								
CO3	Evaluate leadership styles and motivation theory to anticipate the consequences of each leadership style and motivation theory.	PO4								
CO4	Apply course concepts and theory in a practical context.	PO11								

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d	e	V	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	_	1	P	e	c	у
		e	e	n	c	n		0	s	i	n	c	1	s	r	s	s	S
		e	m	/	t	t	i	n		d	i	t	0		a	S		i
		r	a	d	i	0	n	m		u	c	m	n		c	i		s
		i	n	e	n	o		e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	Ĺ		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	s	s	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		w		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					0													
					b													
					1													
					e													
					m													
Cours					S	_												
e	Cours	P	P	P	РО	P O	P	P	P	P	РО	РО	РО	DC	DC	DC	PS	PS
Code	e Title	O1	O2	О3	4	5	O6	O7	O8	O9	10	11	12	PS O1	PS O2	PS O3	O4	O5

	MANA										
	GEME										
	NT								3		
ETMC	THOU		2				2		3	2	
121A	GHTS			1			2	l		3	
121A	AND										
	APPLI										
	CATIO										
	NS										

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETCS103A	Programming for Problem Solving	L	T	P	C
Version 1.0		4	0	0	4
Pre-requisites/Exposure	Advanced of Computer communication				
Co-requisites					

Course Objectives

- 1. Provide an understanding of the role computation can play in solving problems.
- 2. Master the fundamentals of writing codes.
- 3. Learn programming languageto solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.
- 4. Discover how to work with arrays, functions, structures
- 5. Position students so that they can compete for projects and excel in subjects with programming

components.

Course Outcomes

On completion of this course, the students will be able to

CO1.To formulate simple algorithms for arithmetic and logical problems.

CO2. To translate the algorithms to programs (in C language).

CO3.To test and execute the programs and correct syntax and logical errors.

CO4. To implement conditional branching, iteration and recursion.

CO5. To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

Catalog Description

Computer software plays an important role in our daily lives: Our mobile phones, laptop computers, online banking, Internet applications such as YouTube, video games and movies, cars, and almost all aspects of daily life are touched by software. In your personal and professional life, you will utilize computer software. It is also likely that you will select, or even influence the design of, software that is used in your professional or personal life. This thematic sequence will give you a deep understanding of how software works and is created, its limitations, and its potential. You will be able to read software and therefore be able to make informed decisions when selecting or participating in the design of business, scientific, or information systems that utilize computer software. This is a course in which you learn computer programming concepts that are fundamental in nearly any computer programming language. These concepts can then be used in other courses to help you create computer applications that can be used to solve real-world problems

Course Content

UNIT I

12 LECTURE HOURS

Introduction to Programming: Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart / Pseudo code with examples. From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code

UNIT II 8 LECTURE HOURS

Conditional Branching and Loops, Writing and evaluation of conditionals and consequent branching, Iteration and loops. Arrays: Arrays (1-D, 2-D), Character arrays and Strings

UNIT III

10 LECTURE HOURS

Basic Algorithms: Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required) Function: Functions (including using built in libraries), Parameter passing in functions, call by value, passing arrays to functions: idea of call by reference. Recursion: Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function, Quick sort or Merge sort.

UNIT IV

10 LECTURE HOURS

Structure: Structures, Defining structures and Array of Structures Pointers: Idea of pointers, Definingpointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

TEXT BOOKS:

- 1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendanc	Mid Term	Presentation/	End Term
		e	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	To formulate simple algorithms for arithmetic and logical problems.	PO1, PO2					

CO2	To translate the algorithms to programs (in C language).	PO3, PO4
CO3	To test and execute the programs and correct syntax and logical errors.	PO10
CO4	To implement conditional branching, iteration and recursion.	PSO1
CO5	To decompose a problem into functions and synthesize a complete program using divide and conquer approach	PSO2

		En gin eeri ng Kn owl edg e	Proble m ana lysi s	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mp lex pro ble ms	Mo der n too l usa ge	Th e eng ine er and soc iety	En vir on me nt and sus tain abil ity	Ethics	Ind ivi dua l or tea m wo rk	Com mun icati on	Proj ect man age ment and fina nce	Life- long Lear ning	Appl icati on of Con cepts	Inno vatio n and Indu stry Frie ndly	Ethi cs and Com muni catio n Skill s
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	PSO 1	PSO 2	PSO 3
ETCS103	Programmin g for problem solving	2	2	2	2						2			3	3	

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS153A	Programming for problem solving lab	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical learning				
Co-requisites					

Course Objectives

Master the fundamentals of writing Python scripts.

Learn core Python scripting elements such as variables and flow control structures.

Discover how to work with lists and sequence data.

Position students so that they can compete for projects and excel in subjects with programming components.

Course Outcomes

On completion of this course, the students will be able to

- CO 1 To learn the syntax and semantics of Python programming language
- CO 2 To use the structural programming approach in solving the problem.
- CO 3 To use the object oriented programming approach in solving problems
- CO 4 To handle exceptions gracefully
- CO 5 To develop searching and sorting algorithms

Course Content

List of Experiments

1	Develop programs to implement list	2 lab hours
2	Develop programs to implement Dictionary	2 lab hours
3	Develop programs to implement tuples	2 lab hours

4	Develop programs to understand the control structures of python	2 lab hours
5	Develop programs to implement function with stress on scoping	2 lab hours
6	Develop programs to implement classes and objects	2 lab hours
7	Develop programs to implement exception handling.	2 lab hours
8	Develop programs to implement linear search and binary search.	2 lab hours
9	Develop programs to implement insertion sort	2 lab hours
10	Develop programs to implement bubble sort.	2 lab hours
11	Develop programs to implement quick sort.	2 Labs
12	Develop programs to implement heap sort.	2 Labs

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Components	Quiz	Attendanc	Mid Term	Presentation/	End Term
		e	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Examination Scheme:

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	To learn the syntax and semantics of Python programming language	PO2						
CO2	To use the structural programming approach in solving the problem.	PO3						
CO3	To use the object oriented programming approach in solving problems	PO5						

CO 4	To handle exceptions gracefully	PSO1
	To develop searching and sorting algorithms	PO9

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Project man age men t and fina nce	Life - long Lear ning	App licat ion of Con cept s	Inno vati on and Indu stry Frie ndly	Ethi cs and Co mm unic atio n Skil ls
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS150 A	Programmin g for problem solving Lab		2	3		3				3				3		

1=weakly mapped 2= moderately mapped 3=strongly mapped

Semester II

ETCS308A	Web Technologies	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics of HTML				
Co-requisites					

Course Objectives

- 1. Analyze a web page and identify its elements and attributes.
- 2. Create web pages using XHTML and Cascading Style Sheets.
- 3. Build dynamic web pages using JavaScript (Client side programming).
- 4. Create XML documents and Schemas.
- 5. Build interactive web applications using AJAX.

Course Outcomes

Upon completion of the course the students will be able to:

- CO1. Create a well-designed and well-formed, professional Web site utilizing the most current standards and practices
- CO2. Demonstrate knowledge in web technologies including HTML, XHTML, CSS, image editing software, web authoring software, and client-side scripting
- CO3. Create client-side scripts to add interactivity to Web pages
- CO4. Select appropriate Web tools for a Web development project
- CO5. Identify Web authoring obstacles created by the availability of various web browsers and markup language versions

Catalog Description

This course is an introduction to Web site development and the technologies behind it. Students will learn how to design and develop Web pages using current technologies and tools. Topics covered will include the World Wide Web, HTML, Cascading Style Sheets (CSS) and XML. The focus of this course is on dynamic HTML, a collection of web technologies such as HTML and scripting languages used together to create interactive and animated Web pages. Students will learn to program client-side scripts using JavaScript and the Document Object Model to transform static Web pages created with HTML and CSS into dynamic Web pages.

Course Content

Unit I: 8 lecture hours

Concept of WWW, Internet and WWW, HTTP Protocol: Request and Response, Web browser and Web servers, Features of Web 2.0, Common terminology: IP Addressing, URLs, Domain names. Website Creation and maintenance, Web Hosting and Publishing Concepts, Search Engines and their working. HTML: Introduction to HTML, HTML Document structure tags, HTML comments, Text formatting, inserting special characters, anchor tag, adding images and sound, lists: types of lists, tables, frames and floating frames, Developing Forms, Image maps, formatting and fonts, commenting code, color, hyperlink, lists, tables, images, forms, XHTML, Meta tags, Character entities, frames and frame sets,

Unit II: 12 lecture hours

Client-side scripting: JavaScript - Data Types, Control Statements, operators, Built-in and User Defined Functions, Objects in JavaScript, Handling Events. HTML Document Object Model. Page Styling: Separation of content and presentation in HTML, Cascading Style Sheets - Types of Style Sheets - Internal, inline and External style sheets, customizing common HTML elements, types of CSS selectors

Unit III: 12 lecture hours

Concepts of effective web design, Web design issues including Browser, Bandwidth and Cache, Display resolution, Look and Feel of the Website, Page Layout and linking, User centric design, Sitemap, Planning and publishing website, Designing effective navigation, Browser architecture and Web site structure

Unit IV: 8 lecture hours

XML: Introduction to XML-Mark up languages, Features of Mark-up languages, XML Naming rules, Building block of XML, Document, Difference between HTML & XML, Components of XML, XML Parser, DTD's Using XML with HTML and CSS.

Introduction to Web Services, UDDI, SOAP, WSDL, Web Service Architecture, Developing and deploying web services. AJAX –Introduction AJAX programming, Improving web page performance using AJAX.

Text Books

1. Internet and World Wide Web, Deitel H.M., P.J.Deitel, Pearson

Reference Books/Materials

- 1. Web Technologies, Uttam K. Roy, Oxford University Press
- 2. HTML Black Book, Stephen Holzner, Wiley Dreamtech.
- 3. Web Technology, Rajkamal, Tata McGraw-Hill.
- 4. Web Technologies: A Computer Science Perspective, Jeffrey C. Jackson, Pearson.
- 5. XML: How to Program, Deitel&Deitel Nieto

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Create a well-designed and well-formed, professional Web site utilizing the most current standards and practices	PO1
CO2	Demonstrate knowledge in web technologies including HTML, XHTML, CSS, image editing software, web authoring software, and client-side scripting	PO4
СОЗ	Create client-side scripts to add interactivity to Web pages	PO5
CO4	Select appropriate Web tools for a Web development project	PO2
CO5	Identify Web authoring obstacles created by the availability of various web browsers and markup language versions	РО3

		Е	P	D	С	M	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0	h		t	n	0	r	i	k	e	r	t	n
		g	О	s	n	d	e		h	d	m	О	f	i	S	0	h	a
		i	ь	i	d	e	e	_	i	i	m	j	e	1	t	f	i	1
		n	1	g	uc	r	n		c	v	u	e	_	1	P	e	c	у
		e	e	n	t	n			S	i	n	С	1	s	r	s	s	S
		e	m	/	in	t	g i	n		d	i	t	О		a	S		i
		r	a	d	ve	О	n			u	c	m	n		С	i		s
		i	n	e	sti	О	e			a	a	a	g		t	О		
		n	a	v	ga	1	e	n		1	t	n	L		i	n		
		g	1	e	ti	u	r	t		О	i	a	e		c	R		
		K	У	1	0	s	a	a		r	О	g	a		e	e		
		n	s	О	ns	a	n	n		t	n	e	r		S	S		
		О	i	p	of	g	d	d		e		m	n			p		
		w	s	m	co	e	S	S		a		e	i			0		
		1		e	m		o	u		m		n	n			n		
		e		n	pl		c	S		w		t	g			S		
		d		t	ex		i	t		О		a				i		
		g		О	pr		e	a		r		n				b		
		e		f	0		t	i		k		d				i		
				S	bl		У	n				f				1		
				О	e			a				i				i		
				1	m			b				n				t		
				u	S			i				a				i		
				t				1				n				e		
				i				i				С				S		
				О				t				e						
				n				У										
				S														
Cours	Cours	РО	РО	РО		P	P	РО	РО	РО	PO	РО	РО				PS	PS
e	e Title	1	2	3	PO4	O 5	0	7	8	9	10	11	12	PS	PS	PS	O4	O5
Code						3	6							O1	O2	O3		
	WEB																	
F# 66	TECH																	
ETCS	NOL	2	2	2	3	3								2	3			
308A	OGIE																	
	S																	

¹⁼weakly mapped 2= moderately mapped

³⁼strongly map

ETCS307A	Database Management Systems	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Data Base		<u>I</u>	<u>I</u>	
Co-requisites					

Course Objectives

- 1. To understand the different issues involved in the design and implementation of a database system.
- 2. To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.
- 3. To understand and use data manipulation language to query, update, and manage a database.
- 4. To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server (Database Server), Data Warehousing.
- 5. To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.
- 6. For a given query write relational algebra expressions for that query and optimize the developed expression.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Independently understand basic database technology.
- CO2. Describe the fundamental elements of relational database management systems
- CO3. Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- CO4.Design ER-models to represent simple database application scenarios
- CO5. Convert the ER-model to relational tables, populate relational database and formulate SQL queries on data.
- CO6.Improve the database design by normalization.

CO7. Familiar with basic database storage structures and access techniques: file and page organizations, indexing methods including B tree, and hashing.

CO8. Students will be able to work in a group on the design, and implementation of a database system project.

Catalog Description

Database Management Systems (DBMS) are vital components of modern information systems. Database applications are pervasive and range in size from small in-memory databases to terra bytes or even larger in various applications domains. The course focuses on the fundamentals of knowledge base and relational database management systems, and the current developments in database theory and their practice. The course reviews topics such as conceptual data modelling, relational data model, relational query languages, relational database design and transaction processing and current technologies.

Course Content

Unit I: 12 lecture hours

Database system architecture: Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML). Data models: Entity-relationship model, network model, relational and object oriented data models, integrity constraints, data manipulation operations.

Unit II: 8 lecture hours

Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Lossless design. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.

Unit III: 12 lecture hours

Storage strategies: Indices, B-trees, hashing, Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestampbased schedulers, Multi-version and optimistic Concurrency Control schemes, Database recovery

Unit IV: 8 lecture hours

Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.

Text Books

- 1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Principles of Database and Knowledge Base Systems", Vol 1 by J.D. Ullman, Computer Science Press.

Reference Books/Materials

1. "Fundamentals of Database Systems", R. Elmasri and S. Navathe, Pearson Education

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping betwe	en COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Independently understand basic database technology.	PO2
CO2	Describe the fundamental elements of relational database management systems	PO3

СОЗ	Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.	PO4
CO4	Design ER-models to represent simple database application scenarios	PO5
CO5	Convert the ER-model to relational tables, populate relational database and formulate SQL queries on data.	PO4
CO6	Improve the database design by normalization.	PO4
СО7	Familiar with basic database storage structures and access techniques: file and page organizations, indexing methods including B tree, and hashing.	PO9
CO8	Students will be able to work in a group on the design, and implementation of a database system project.	PSO1

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d		v	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r		r	c	v	u	e	-	1	P	e	c	y
		e	e	n	c	n		0	s	i	n	c	1	S	r	s	s	S
		e	m	/	t	t	i	n		d	i	t	0	5	a	s	5	i
		r	a	d	i	0		m		u	c	m	n		c	i		S
		i	n	e	n	0		e		a	a	a	g		t	0		5
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u		t		0	i	a	e		c	R		
		K	у	1	s	S		a		r	0	g	a		e	e		
		n	S	0	t	a		n		t	n	e	r		s	s		
		0	i	p	i	g		d		e	-11	m	n			p		
		W	S	m	g	e		S		a		e	i			0		
		1		e	a		0	u		m		n	n			n		
		e		n	t		c	S		W		t	g			s		
		d		t	i		i	t		0		a	8			i		
		g		0	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	s		у	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t		
				u	c			i				a				i		
				t	0			1				n				e		
				i	m			i				c				s		
				О	p			t				e						
				n	1			у										
				s	e													
					X													
					p													
					r													
					0													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	DC	P	P	P	P	P	DC.	DC.	DC				DC	DC
e	e Title	О	О	О	PO 4	O	О	О	О	О	PO 10	PO 11	PO 12	PS	PS	PS	PS O4	PS O5
Code	2 1100	1	2	3	_	5	6	7	8	9	10	11	12	O1	O2	О3		

	Datab												
ETCS 307A	Mana geme nt Syste ms	1	2	3	3	3		3		3	2	1	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETCS112A	Object Oriented Programming	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

This course introduces the concepts of object-oriented programming to students with a background in the procedural paradigm. The course begins with a brief review of control structures and data types with emphasis on structured data types and array processing. It then moves on to introduce the object-oriented programming paradigm, focusing on the definition and use of classes along with the fundamentals of object-oriented design. Other topics include an overview of programming language principles, simple analysis of algorithms, basic searching and sorting techniques, event-driven programming, memory management and an introduction to software engineering issues.

Course Outcomes

On completion of this course, the students will be able to

CO1 Explain the steps in creating an executable program for a computer, including the intermediate representations and their purpose.

CO2. Manipulate binary patterns and understand the use of binary to represent numbers. CO 3. Apply good programming style and understand the impact of style on developing and maintaining programs. CO4. Effectively use a version control system and the Linux command line tools for incremental development.

CO5. Explain the benefits of object-oriented design and understand when it is an appropriate methodology to use.

CO6. Design object-oriented solutions for small systems involving multiple objects.

CO7. Identify the relative merits of different algorithmic designs.

Catalog Description

This is a course in which you learn computer programming concepts that are fundamental in nearly any computer programming language. These concepts can then be used in other courses to help you create computer applications that can be used to solve real-world problems

Course Content

Unit I: 12 lecture hours

Introduction: Introducing Object-Oriented Approach related to other paradigms (functional, data decomposition), Characteristics of Object-Oriented Languages.

Basic terms and ideas: Abstraction, Encapsulation, Information hiding, Inheritance, Polymorphism, Review of C, Difference between C and C++, Cin, Cout, new, delete operators.

Unit II: 8 lecture hours

Classes and Objects: Abstract data types, Object & classes, attributes, methods, C++ class declaration, State identity and behavior of an object, Constructors and destructors, instantiation of objects, Default parameter value, Copy Constructor, Static Class Data, Constant Classes, C++ garbage collection, dynamic memory allocation.

Unit III: 12 lecture hours

Inheritance and Polymorphism: Inheritance, Types of Inheritance, Class hierarchy, derivation – public, private & protected, Agrégations, composition vs classification hiérarchies, Polymorphism, Type of Polymorphism – Compile time and runtime, Method polymorphism, Polymorphism by parameter, Operator overloading, Parametric polymorphism, Generic function – template function, function name overloading, Overriding inheritance methods.

Unit IV: 8 lecture hours

Files and Exception Handling: Persistent objects, Streams and files, Namespaces, Exception handling, Generic Classes Standard Template Library: Standard Template Library, Overview of Standard Template Library, Containers, Algorithms, Iterates, Other STL Elements, The Container Classes, General Theory of Operation, Vectors.

Text Books

- 1. A.R. Venugopal, Rajjkumar, T. Ravishanker "Mastering C++", TMH
- 2. R. Lafore, "Object Oriented Programming using C++", BPB Publications
- 3. Schildt Herbert, "C++ Programming", 2nd Edition, Wiley DreamTech

Reference Books/Materials

- 1. D. Parasons, "Object Oriented Programming with C++", BPB Publication
- 2. Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication
- 3. YashwantKanethkar, "Object Oriented Programming using C++", BPB

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs	

	Course Outcomes (COs)	Mapped Program Outcomes
CO1	CO1 Explain the steps in creating an executable program for a computer, including the intermediate representations and their purpose.	PO2
CO2	CO2. Manipulate binary patterns and understand the use of binary to represent numbers. CO 3. Apply good programming style and understand the impact of style on developing and maintaining programs. CO4. Effectively use a version control system and the Linux command line tools for incremental development.	PO3
CO3	CO5. Explain the benefits of object-oriented design and understand when it is an appropriate methodology to use.	PO4
CO4	CO6. Design object-oriented solutions for small systems involving multiple objects.	PO5
CO5	CO7. Identify the relative merits of different algorithmic designs.	PO4
CO6	CO1 Explain the steps in creating an executable program for a computer, including the intermediate representations and their purpose.	PO4
CO7	CO2. Manipulate binary patterns and understand the use of binary to represent numbers. CO 3. Apply good programming style and understand the impact of style on developing and maintaining programs. CO4. Effectively use a version control system and the Linux command line tools for incremental development.	PO9, PSO 1

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
									t				i	k				
		n a	r	e	0	o d		n		n d	0 m	r	f	i	e	r	t h	n
		g i	0 h	s i	n			V	h i	i	m	0			S	0		a 1
			b		d	e	e	i			m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V :	u	e	1	1	P	e	c	У
		e	e	n	c	n	g	0	S	i	n ·	С	1	S	r	S	S	s .
		e	m	/	t ·	t	i	n		d	i	t	0		a	s .		i
		r	a	d	i	0		m		u	c	m	n		c	i		S
		i	n	e	n	0		e		a	a	a	g		t ·	0		
		n	a	V	V	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K	У	1	S	S	a	a		r	О	g	a		e	e		
		n	S .	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g		d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t .		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		0	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	c			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					s													
Cours	Cours	P	P	P	РО	P	P	P	P	P	РО	РО	РО				PS	PS
e	e Title	01	O2	03	4	O 5	O6	O7	08	09	10	11	12	PS	PS	PS	O4	O5
Code						3								O1	O2	О3		- *

Objec																	
t													3	2			
		2	3	3	3				3								2
progra		2	3	3					3								2
mmin																	
g																	
	t orient ed progra mmin	t orient ed progra mmin	t orient ed 2 progra mmin	t orient ed 2 3 progra mmin	t orient ed 2 3 3 progra mmin	t orient ed 2 3 3 3 3 progra mmin	t orient ed 2 3 3 3 3 progra mmin	t orient ed 2 3 3 3 3 progra mmin	t orient ed 2 3 3 3 3 progra mmin	t orient ed 2 3 3 3 3 3 3	t orient ed 2 3 3 3 3 3 3 3 3 3	t orient ed 2 3 3 3 3 3 3 3	t orient ed progra mmin 2 3 3 3 3	t orient ed 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	t orient ed progra mmin 2 3 3 3 3 3	t orient ed progra mmin 3 3 3	t orient ed progra mmin 2 3 3 3 3 3 3 3 3

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETPH112A	Electricity and Magnetism(GE-II)	L	T	P	C
Version 1.0		4	2	-	6
Pre-requisites/Exposure	Basics of Physics				
Co-requisites					

Course Objectives

- 1. The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
- 2. To learn how charges behave through electric circuits.
- 3. Consolidate the understanding of fundamental concepts in Electricity and Magnetism more rigorously as needed for further studies in physics, engineering and technology.
- 4. Expand and exercise the students' physical intuition and thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems

Course Outcomes

On completion of this course, the students will be able to

- CO1. Acquire fundamental knowledge of electrostatic interaction using Gauss Law and able to apply on physical systems.
- CO2. Better insight about magnetic and dielectric behaviour of materials.
- CO3. Better understanding of electrical circuits/theorems which enhances problem solving approach.
- CO4. Develop the ability to correlates the daily life phenomenon to physics using mathematical tools.

Catalog Description

This course imparts the basic concepts of Physics. The course is design to point to a plausible physical origin of simple electromagnetic phenomena in nature, based on what the candidate has learned in the course about fundamental laws and concepts in electricity and magnetism. The course of Electricity and Magnetism help organizing the data in variety of ways to solve the problem efficiently. The course is focused on theoretical discussions of Electricity and Magnetism and applications of discussed phenomenon. It also discusses about daily life physics like magnetism, current etc.

Course Content

Unit I: 10 Lecture hours

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry.

Conservative nature of Electrostatic Field .Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.

Unit II: 10 Lecture hours

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere.

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics.

Unit III: 10 Lecture hours

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its

Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field.

Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis.

Unit IV: 10 Lecture hours

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current.

Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit.

Network theorems: Ideal Constant-voltage and Constant-current Sources. Network Theorems: The venin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.

Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping.CDR.

Text Books

- 1. Physics for Scientists and Engineers (6th Ed.), Raymond A. Serway and John W. Jewett, Thomson Brooks (2004).
- 2. Engineering Physics Theory and Practical, A. K. Katiyar and C. K. Pandey, Wiley (2015)

Reference Books/Materials

- 1. Introduction to Electrodynamics (3rd Indian reprint), D.J. Griffiths,., Pearson Education (2003).
- 2. Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam

Weightage (%) 10 10	20	10	50
---------------------	----	----	----

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire fundamental knowledge of electrostatic interaction using Gauss Law and able to apply on physical systems.	PO1& PO2
CO2	Better insight about magnetic and dielectric behaviour of materials.	PO4
СОЗ	Better understanding of electrical circuits/theorems which enhancesproblem solving approach.	PO6
CO4	Develop the ability to correlates the daily life phenomenon to physics using mathematical tools.	PO7 & PO8

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	App licat ion of Con cept s	Ethics	Ana lysis
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETPH112 A	Electricity & Magnetism	2	2		2		2	2	3					3		2

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS355A	Database Managemet Systems Lab	L	T	P	C
Version 1.0		-	-	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To explain basic database concepts, applications, data models, schemas and instances.
- 2. To demonstrate the use of constraints and relational algebra operations.
- 3. To facilitate students in Database design.
- 4. To familiarize issues of concurrency control and transaction management.

Course Outcomes

On completion of this course, the students will be able to:-

- CO1. Apply the basic concepts of Database Systems and Applications.
- CO2. Use the basics of SQL and construct queries using SQL in database creation and interaction.
- CO3. Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system.
- CO4. Analyze and Select storage and recovery techniques of database system.

Catalog Description

This course introduces the core principles and techniques required in the design and implementation of database systems. This introductory application-oriented course covers the relational database systems RDBMS - the predominant system for business scientific and engineering applications at present. It includes Entity-Relational model, Normalization, Relational model, Relational algebra, and data access queries as well as an introduction to SQL. It also covers essential DBMS concepts such as: Transaction Processing, Concurrency Control and Recovery. It also provides students with theoretical knowledge and practical skills in the use of databases and

database management systems in information technology applications.

Course Content

List of Experiments

S.No	Experiment	No of Hours
1	Design a Database and create required tables. For e.g. Bank, College	4
	Database	
2	Apply the constraints like Primary Key, Foreign key, NOT NULL to	2
	the tables.	
3	Write a SQL statement for implementing ALTER, UPDATE and	2
	DELETE.	
4	Write the queries to implement the joins.	4
5	Write the queries for implementing the following functions: MAX	2
	(), MIN (), AVG (), COUNT ().	
6	Write the queries to implement the concept of Integrity constrains	4
7	Write the queries to create the views.	2
8	Perform the queries for triggers.	4
9	Perform the following operation for demonstrating the insertion,	2
	updating and deletion using the referential integrity constraints.	
10	Do some more practice based on your class work.	2

Text Books

1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

Reference Books/Materials

- 1. "Principles of Database and Knowledge Base Systems", Vol 1 by J.D. Ullman, Computer Science Press.
- 2. "Fundamentals of Database Systems", R. Elmasri and S. Navathe, Pearson Education.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Apply the basic concepts of Database Systems and Applications	PO5								
CO2	Use the basics of SQL and construct queries using SQL in database creation and interaction	PO3								
СОЗ	Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system	PO3								
CO4	Analyze and Select storage and recovery techniques of database system.	PO2								

		En	Pro	Desi	Cond	M	T	Envir	Е	Ind	Com	Proj	Life	Emp	Ethi	Kno
		gin	ble	gn/d	uct	0	he	onme	t	ivi	mun	ect	-	loya	cs	wled
		eeri	m	evel	inves	d	en	nt	h	dua	icati	man	long	bilit	and	ge
		ng	ana	opm	tigati	er	gi	and	i	1 or	on	age	Lear	у	Beh	
		Kn	lysi	ent	ons	n	ne	sustai	c	tea		men	ning		avio	
		owl	S	of	of	to	er	nabili	S	m		t			ur	
		edg		solu	comp	ol	an	ty		wo		and				
		e		tion	lex	us	d			rk		fina				
				S	probl	a	so					nce				
					ems	g	ci									
						e	et									
							у									
Cours	Course	PO1	PO2	PO3	PO4	Р	P	PO7	P	PO9	PO10	PO11	PO12			
e	Title	FUI	FU2	103	FU4	O	O6	10/	O	FU9	FOIU	FOII	FO12	PSO1	PSO2	PSO3
									1		1	1				1

Code				5		8				
ETCS 355A	Databas e Manage ment System s Lab	3	3	2					3	

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETCS166A	Object Oriented Programming Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical learning				
Co-requisites					

Course Objectives

This course will give the learner an insight into how everything can be considered an object and how simply we can write code to implement it. It helps us in making programming relatable to real world, as everything around us can be an object (having properties and functionality) Object-oriented programming aims to implement real world entities like inheritance, hiding, polymorphism etc in programming. The main aim of OOP is to bind together the data and the functions that operates on them so that no other part of code can access this data except that function.

Course Outcomes

On completion of this course, the students will be able to

CO1 Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.

CO2 Understand fundamentals of object-oriented programming including defining classes, invoking methods, using class libraries, etc.

CO3 Be aware of the important topics and principles of software development.

CO4 Develop the ability to write a computer program to solve specified problems.

Catalog Description

This course emphasizes solving problems using the language, and introduces standard programming techniques like alternation, iteration and recursion. It will briefly glimpse the basics of software engineering practices like modularization, commenting, and naming conventions which help in collaborating and programming in teams. This course is enabled the students to formulate algorithms for arithmetic and logical problems, convert these algorithms to C language programs. It also aims on using arrays, pointers and structures to formulate algorithms and programs. In addition to that, apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

List of Experiments (Indicative)

1	Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power () that takes a double value for n and an int value for p, and returns theresult as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared. Write a main () function that gets values from the user to test this function.	2 lab hours
2	A point on the two dimensional plane can be represented by two numbers: an X coordinate and a Y coordinate. For example, (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates. Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Than set the third point equal to the sum of the other two, and display the value of the new point. Interaction with the program might look like this: Enter coordinates for P1: 3 4 Enter coordinates for P2: 5 7 Coordinates of P1 + P2 are: 8, 11	2 lab hours
3	Create the equivalent of a four function calculator. The program should request the user to enter a number, an operator, and another number. It should then carry out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a	2 lab hours

	switch statement to select the operation). Finally it should display the result. When it finishes the calculation, the program should ask if the user wants to do another calculation. The response can be 'Y' or 'N'. Some sample interaction with the program might look like this. Enter first number, operator, second number: $10/3$ Answer = 3.333333 Do another (Y/ N)? Y Enter first number, operator, second number $12 + 100$ Answer = 112	
4	A phone number, such as (212) 767-8900, can be thought of as having three parts: the area code (212), the exchange (767) and the number (8900). Write a program that uses a structure to store these three parts of a phone number separately. Call the structure phone. Create two structure variables of type phone. Initialize one, and have the user input a number for the other one. Then display both numbers. The interchange might look like this: Enter your area code, exchange, and number: 415 555 1212 My number is (212) 767-8900 Your number is (415) 555-1212	2 lab hours
5	Create two classes DM and DB which store the value of distances. DM stores distances in meters and centimeters and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB object, depending on the units in which the results are required. The display should be in the format of feet and inches or meters and centimeters depending on the object on display.	2 lab hours
6	Create a class rational which represents a numerical value by two double valuesNUMERATOR & DENOMINATOR. Include the following public member Functions: • constructor with no arguments (default). • constructor with two arguments. • void reduce() that reduces the rational number by eliminating the highest common factor between the numerator and denominator. • Overload + operator to add two rational number. • Overload >> operator to enable input through cin. • Overload <<< operator to enable output through cout. Write a main () to test all the functions in the class.	4 lab hours
7	Consider the following class definition class father { protected: int age; public; father (int x) {age = x;} virtual void iam () { cout<< "I AM THE FATHER, my age is: "<< age<< endl:} }; Derive the two classes son and daughter from the above class and for each, define iam () to write our similar but appropriate messages. You should also define suitable constructors for these classes. Now, write a main () that creates objects of the three classes and then calls iam () for them. Declare pointer to father. Successively, assign addresses of objects of the two derived classes to this pointer and in each case, call iam () through the pointer to demonstrate polymorphism in action.	4 lab hours

8	Write a program that creates a binary file by reading the data for the students from the terminal. The data of each student consist of roll no., name (a string of 30 or lesser no. of characters) and marks.	4 lab hours
9	A hospital wants to create a database regarding its indoor patients. The information to store include a) Name of the patient b) Date of admissionDisease d) Date of discharge Create a structure to store the date (year, month and date as its members). Create a base class to store the above information. The member function should include functions to enter information and display a list of all the patients in the database. Create a derived class to store the age of the patients. List the information about all the to store the age of the patients. List the information about all the pediatric patients (less than twelve years in age).	4 lab hours
10	Make a class Employee with a name and salary. Make a class Manager inherit from Employee. Add an instance variable, named department, of type string. Supply a method to toString that prints the manager's name, department and salary. Make a class Executive inherit from Manager. Supply a method to String that prints the string "Executive" followed by the information stored in the Manager superclass object. Supply a test program that tests these classes and methods.	2 lab hours
11	Imagine a tollbooth with a class called toll Booth. The two data items are a type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected. A constructor initializes both these to 0. A member function called payingCar () increments the car total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total but adds nothing to the cash total. Finally, a member function called displays the two totals. Include a program to test this class. This program should allow the user to push one key to count a paying car, and another to count a nonpaying car. Pushing the ESC kay should cause the program to print out the total cars and total cash and then exit.	2 lab hours
12	Write a function called reversit () that reverses a string (an array of char). Use for loop that swaps the first and last characters, then the second and next to last characters and so on. The string should be passed to reversit () as an argument. Write a program to exercise reversit (). The program should get a string from the user, call reversit (), and print out the result. Use an input method that allows embedded blanks. Test the program with Napoleon's famous phrase, "Able was I ere I saw Elba)".	2 lab hours
13	. Create some objects of the string class, and put them in a Deque-some at the head of the Deque and some at the tail. Display the contents of the Deque using the forEach () function and a user written display function. Then search the Deque for a particular string, using the first	2 lab hours

	That () function and display any strings that match Einelly remove all	
	That () function and display any strings that match. Finally remove all	
	the items from the Deque using the getLeft () function and display each	
	item. Notice the order in which the items are displayed: Using getLeft	
	(), those inserted on the left (head) of the Deque are removed in "last	
	in first out" order while those put on the right side are removed in "first	
	in first out" order. The opposite would be true if getRight () were used.	
	Create a base class called shape. Use this class to store two double type	2 lab hours
	values that could be used to compute the area of figures. Derive two	
	specific classes called triangle and rectangle from the base shape. Add	
	to the base class, a member function get_data () to initialize base class	
	data Members and another member function display_area () to compute	
	and display the area of figures. Make display_area () as a virtual	
14	function and redefine this function in the derived classes to suit their	
	requirements. Using these three classes, design a program that will	
	accept dimensions of a triangle or a rectangle interactively and display	
	the area. Remember the two values given as input will be treated as	
	lengths of two sides in the case of rectangles and as base and height in	
	the case of triangles and used as follows: Area of rectangle = $x * y$ Area	
	of triangle = $\frac{1}{2} * x * y$	

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.	PO2
CO2	Understand fundamentals of object-oriented programming including defining classes, invoking methods, using class libraries, etc.	PO3
CO3	Be aware of the important topics and principles of software development.	PO5, PSO1,
CO4	Develop the ability to write a computer program to solve specified problems.	PO9

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d		v	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	_	1	P	e	c	y
		e	e	n	c	n		0	s	i	n	c	1	S	r	s	s	S
		e	m	/	t	t		n		d	i	t	0		a	s		i
		r	a	d	i	0		m		u	c	m	n		c	i		s
		i	n	e	n	О		e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	S	s	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	s	m	g	e	s	s		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		w		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					0													
					b													
					1													
					e m													
					m s													
Cours																		
e	Cours	РО	РО	РО	DO 4	P O	РО	DG	DG	DC	PS	PS						
Code	e Title	1	2	3	PO4	5	6	7	8	9	10	11	12	PS O1	PS O2	PS O3	O4	O5

	Object										
	orient							3	2		
ETCS	ed	2	2	3		2					2
166A	progra	2	3	3		3					2
	mmin										
	gLab										

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETCA365A	Linux Environment Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	-				
Co-requisites	-				

Course Objectives

The objective of this course is to impart necessary and practical knowledge concerning basic Linux usage.

- 1. To implement some standard Linux utilities such as ls.cpetc
- 2. To write shell script programs to solve problems.
- 3. To learn basics of system administration

Course Outcomes

On completion of this course, the students will be able to

CO1. Understanding the basic set of commands and utilities in Linux/UNIX systems

- CO2. Able to create file handling utilities by using Linux shell environment
- CO3. Evaluate the concept of shell scripting programs
- CO4. Obtain a foundation for System Administration

Catalog Description

This course will provide you with a basic introduction to Linux skills The student will learn how a Linux system is organized, and will demonstrate introductory system administration tasks. The student will be able to reasons why Linux and the open source development model are so important in today's computing environment.

List of Experiments (Indicative)

1	Installing Linux Operating System	2 lab hours
2	Exploring the System: Starting Up and changing run levels, Using the man utility, Using built-in help switches for commands, Using Auto completion	2 lab hours
3	Using cd, Using pwd, Using mkdir, Using rmdir,	
4	Using Touch, Using ls, Using mv, Using cp, Using cat, Using Redirection, rm, Using vi	2 lab hours
5	Searching for files: grep, frep and similar commands	2 lab hours
6	Preamble, Virtual terminals, Setting up a basic display ,X clients, Window Managers, Display Manager, xinit and startx, system-config-display	2 lab hours
7	Manually creating a new user, Manually creating a new groups, automatically creating a new user, automatically creating new groups, using sticky bits, share the file between users and groups	2 lab hours
8	Installing, Querying and Uninstalling Packages, Third party tools, Building Software from Source	2 lab hours
9	Determining device type, Creating devices, mounting and umounting devices	2 lab hours
10	Different kind of shells (c shell, bash shell, korn shell and others), A simple Script, Using variables in scripts	2 lab hours
11	Shell Script: Using Control Structures	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs						
	Course Outcomes (COs)						
CO1	Understanding the basic set of commands and utilities in Linux/UNIX systems	PO5					
CO2	Able to create file handling utilities by using Linux shell environment.	PO6					
CO3	Evaluate the concept of shell scripting programs	PO3					
CO4	Obtain a foundation for System Administration	PO12					

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	Α
		n	r	e	0	О	h	n	t	n	0	r	i	k	e	r	t	n
		g	О	s	n	d	e	v	h	d	m	О	f	i	S	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	-	1	P	e	c	y
		e	e	n	c	n	g	О	S	i	n	С	1	S	r	S	S	s
		e	m	/	t	t	i	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	V	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K	У	1	S	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t .		c	S		W		t	g			S		
		d		t	i		i	t		0		a				i		
		g		0	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b :				n				t		
				u	С			i 1				a				i		
				t :	0			1				n				e		
				i	m			i				c				S		
				0	p			t				e						
				n	1			У										
				S	e													
					X													
					p r													
					0													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	P	P	P	P	P	P	P	P	P				DC	DC
e	e	О	О	О	О	O	O	О	О	О	O1	O1	O1	PS	PS	PS	PS O4	PS O5
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2	01	O2	O3	04	03

ETC	Linu										
A365	X							3	2		
A	Envir		2	3	2			3	2		
	onme										
	nt										
	Lab										

2= moderately mapped

3=strongly mapped

ETCA164A	Web Technologies Lab	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of HTML				
Co-requisites					

Course Objectives

- 1. To understand best technologies for solving web client/server problems
- 2. analyze and design real time web applications
- 3. use Java script for dynamic effects and to validate form input entry
- 4. Analyze to Use appropriate client-side or Server-side applications

Course Outcomes

On completion of this course, the students will be able to

CO1. Analyze a web page and identify its elements and attributes. ·

CO2.Create web pages using XHTML and Cascading Style Sheets. ·

CO3.Build dynamic web pages using JavaScript (Client side programming). ·

CO4. Create XML documents and Schemas.

Catalog Description

This course is an introduction to Web site development and the technologies behind it. Students will learn how to design and develop Web pages using current technologies and tools. Topics covered will include the World Wide Web, HTML, Cascading Style Sheets (CSS) and XML.

List of Experiments (Indicative)

1	Write HTML/Java scripts to display your CV in Web Browser	2 lab hours
2	Creation and annotation of static web pages using any HTML editor.	2 lab hours
3	Write a program to use XML and JavaScript for creation of your homepage.	2 lab hours
4	Write a program in XML for creation of DTD which specifies a particular set of rules.	4 lab hours
5	Create a Stylesheet in CSS/XSL and display the document in Web Browser	4 lab hours
6	Create a Registration Form with Table	3 lab hours
7	CSS: Inline Style, Internal Style, and External Style Sheets	3 lab hours
	JavaScript & HTML:	
8	· Use user defined function to get array of values and sort them in ascending order · Demonstrate String and Math Object's	10 lab hours

	predefined methods · Demonstrate Array Objects and Date Object's predefined methods · Exception Handling · Calendar Creation : Display all month · Event Handling · Validation of registration form · Open a Window from the current window · Change color of background at each click of button or refresh of a page · Display calendar for the month and year selected from combo box ·OnMouseover event	
9	XMLCreate any catalogDisplay the catalog created using CSS or XS	4 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Analyze a web page and identify its elements and attributes.	PO1
CO2	Create web pages using XHTML and Cascading Style Sheets. ·	PO4

CO3	Build dynamic web pages using JavaScript (Client side programming).	PO5
CO4	Create XML documents and Schemas	PO2

		En	Pro	De	Co	Mo	Th	En	Eth	Ind	Co	Proj	Life	Em	Ethi	Kno
		gin	ble	sig	nd	der	e	vir	ics	ivi	mm	ect	-	ploy	cs	wle
		eer	m	n/d	uct	n	en	on		du	unic	man	long	abili	and	dge
		ing	ana	eve	inv	too	gin	me		al	atio	age	Lea	ty	Beh	
		Kn	lys	lop	esti	1	eer	nt		or	n	men	rnin		avio	
		ow	is	me	gat	usa	an	an		tea		t	g		ur	
		led		nt	ion	ge	d	d		m		and				
		ge		of	S		soc	sus		WO		fina				
				sol	of		iet	tai		rk		nce				
				uti	со		У	na								
				ons	mp lex			bili								
								ty								
					pro ble											
					ms											
					1113											
Course		PO	РО	PO	PO	PO	PO	PO	PO	РО	PO1	PO1	PO1			
Code	Course Title	1	2	3	4	5	6	7	8	9	0	1	2	PSO	PSO	PSO
														1	2	3
	WEB															
ETCA164	TECHNOLOGIE	2	2		3	3										3
A	S LAB	2				3										

1=weakly mapped 2= moderately mapped 3=strongly mapped

Semester III

ETCS304A	Computer Networks	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Data Structure and Algorithms				
Co-requisites	Basic Mathematics				

Course Objectives

1. Help in understanding the concepts of communication and computer networks.

Course Outcomes

On completion of this course, the students will be able to

- CO1. To develop an understanding of modern network architectures from a design and performance perspective.
- C02. To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- CO3. To provide an opportunity to do network programming
- CO4. Explain the functions of the different layer of the OSI Protocol.
- CO5. For a given requirement (small scale) of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component

Catalog Description

Through this subject, student will be able to understand the coarse grained aspects of Data Communication. Student will understand the applications of data structures and algorithms in networks. The internals of communications will be discussed throughout the course duration.

Course Content

Unit I: 8 lecture hours

Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN,

Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum

Unit II: 12 lecture hours

Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA

Unit III: 12 lecture hours

Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

Unit IV: 8 lecture hours

Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography

Text Books

- 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGraw-Hill.
- 2. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.

Reference Books/Materials

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	To develop an understanding of modern network architectures from a design and performance perspective.	PO2, PO12						
CO2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).	PO12						
CO3	To provide an opportunity to do network programming	PO2						
CO4	Explain the functions of the different layer of the OSI Protocol.	PO4, PO5						
CO5	For a given requirement (small scale) of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component	PO11, PO12						

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	Α
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d	e	V	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	_	1	P	e	c	у
		e	e	n	c	n	g	0	s	i	n	С	1	s	r	s	s	S
		e	m	/	t	t	i	n	~	d	i	t	0		a	S		i
		r	a	d	i	0	n	m		u	c	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	S	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					0 b													
					b 1													
					e m													
					m s													
Cours						P												
e	Cours	P	P	P	PO	O	P	P	P	P	РО	РО	РО	PS	PS	PS	PS	PS
Code	e Title	O1	O2	O3	4	5	O6	O7	O8	O9	10	11	12	01	O2	O3	O4	O5

ETCS 304A	Comp uter Netw orks		3		3	3						3	3	2	2			2	
--------------	------------------------------	--	---	--	---	---	--	--	--	--	--	---	---	---	---	--	--	---	--

2= moderately mapped

3=strongly mapped

ETCS211A	Operating Systems	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Computer Organization & Architecture				
Co-requisites					

Course Objectives

- 1. To learn the mechanisms of OS to handle processes and threads and their communication.
- 2. To learn the mechanisms involved in memory management in contemporary OS
- 3. To gain knowledge on distributed operating system concepts that includes architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols
- 4. To know the components and management aspects of concurrency management
- 5. To learn to implement simple OS mechanisms

Course Outcomes

On completion of this course, the students will be able to:

CO1. Describe the important computer system resources and the role of operating system in their management policies and algorithms.

- CO2. To understand various functions, structures and history of operating systems and should be able to specify objectives of modern operating systems and describe how operating systems have evolved over time.
- CO3. Understanding of design issues associated with operating systems.
- CO4. Understand various process management concepts including scheduling, synchronization, and deadlocks.
- CO5. To understand concepts of memory management including virtual memory.
- CO6. To understand issues related to file system interface and implementation, disk management

Catalog Description

This course will provide an introduction to the internal operation of modern operating systems. In particular, the course will cover processes and threads, mutual exclusion, CPU scheduling, deadlock, memory management, and file systems.

Course Content

Unit I: 6 lecture hours

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS-Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

Unit II: 12 lecture hours

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads,

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time;

Scheduling algorithms: Pre-emptive and Non-preemptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

Unit III: 12 lecture hours

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition—Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

Unit IV: 12 lecture hours

Process-Synchronization & Deadlocks: Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer\ Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. Definition of Deadlocks, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

I/O Systems: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms

Text Books

1. Silbersachatz and Galvin, "Operating System Concepts", Pearson

Reference Books/Materials

- 1. Tannenbaum, "Operating Systems", PHI, 4th Edition.
- 2. William Stallings, "Operating Systems Internals and Design Principles", PHI
- 3. HallMadnick, J. Donovan, "Operating Systems", Tata McGraw Hill.
- 4. W. Tomasi, "Electronic Communication Systems" Pearson Education, 5th Edition

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	ce Mid Term Presentation/		End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Describe the important computer system resources and the role of operating system in their management policies and algorithms.	PO1
CO2	To understand various functions, structures and history of operating systems and should be able to specify objectives of modern operating systems and describe how operating systems have evolved over time.	PO1
CO3	Understanding of design issues associated with operating systems.	PO3
CO4	Understand various process management concepts including scheduling, synchronization, and deadlocks.	PO4
CO5	To understand concepts of memory management including virtual memory.	PO5
CO6	To understand issues related to file system interface and implementation, disk management.	PO3

		Е	P	D	С	M	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	О	О	h	n	t	n	О	r	i	k	e	r	t	n
		g	О	S	n	d	e	V	h	d	m	О	f	i	S	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	-	1	P	e	С	У
		e	e	n	c	n	g ·	0	S	i	n	c	1	S	r	S	S	S
		e	m	/	t :	t	i	n		d	i	t	0		a	S .		i
		r	a	d	i	0	n	m		u	c	m	n		c	i		S
		i	n	e	n	0	e	e		a 1	a	a	g L		t :	0		
		n	a 1	V	V	1	e	n		1	t i	n			i	n R		
		g K	1	e 1	e	u	r	t		0		a	e		С			
			У		s t	S	a	a		r t	0 n	g e	a r		e s	e		
		n o	s i	0 n	i	a g	n d	n d		e	n	m	n		3	S		
		w	S	p m		g e	s	S		a		e	i			p o		
		1		e	a		0	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		0		a	5			i		
		g		0	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				s	s		у	n				f				1		
				О	О		,	a				i				i		
				1	f			b				n				t		
				u	с			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			у										
				S	e													
					X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	P	P	P	P	P	P	DC	DC	DC.				DC	DC
e	e	О	О	О	О	O	O	О	О	О	PO 10	PO 11	PO 12	PS	PS	PS	PS O4	PS O5
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3		

ETCS ting 211A Syste ms 2	,	3	3	3									2	2			
---------------------------	---	---	---	---	--	--	--	--	--	--	--	--	---	---	--	--	--

2= moderately mapped

3=strongly mapped

ETEC 210A	Digital Electronics	L	T	P	С
Version 1.0		4	0	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
- 2. To understand number representation and conversion between different representation in digital electronic circuits.
- 3. To analyze logic processes and implement logical operations using combinational logic circuits.
- 4. To understand characteristics of memory and their classification.
- 5. To understand concepts of sequential circuits and to analyze sequential systems in terms of state machines.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Create the appropriate truth table from a description of a combinational logic function.
- CO2. Create a gate-level implementation of a combinational logic function described by a truth table using and/or/not gates, multiplexers or ROMs, and analyse its timing behaviour.
- CO3. Create a state transition diagram from a description of a sequential logic function and then convert the diagram into an implementation of a finite-state machine with the appropriate combinational and sequential components.
- CO4. Describe the operation and timing constraints for latches and registers.

CO5. Draw a circuit diagram for a sequential logic circuit and analyse its timing properties (input setup and hold times, minimum clock period, output propagation delays).

CO6. Evaluate combinational and sequential logic designs using various metrics: switching speed, throughput/latency, gate count and area, energy dissipation and power.

Catalogue Description

This course helps the student to develop a digital logic and apply it to solve real life problems and will able to analyze, design and implement combinational logic circuits and sequential logic circuits.

Course Contents

Unit I: 10 lecture hours

UNIT – I

Number Systems and Codes: Review of number systems, BCD codes and arithmetic, Gray code, self-complimenting codes, Error detection and correction principles.

Digital Circuits: Switching algebra & simplification of Boolean expressions. De Morgan's Theorem. Implementations of Boolean expressions using logic gates

Unit II: 10 lecture hours

Combinational Logic Design: Combinational circuit analysis and synthesis, Techniques for minimization of Boolean functions such as Karnaugh map, VEM and Quine-Mc Cluskey methods. Design of arithmetic circuits, code convertors, multiplexers, demultiplexers, encoders, decoders & comparators. Parity generators and checker.

Introduction to Sequential Logic: Need for sequential circuits, Binary cell, Latches and flip-flops. RS, JK, Master-Slave JK, D & T flip flops.

Unit III: 10 lecture hours

Synchronous Sequential Circuit Design: Fundamentals of Synchronous sequential circuits, Classification of synchronous machines, Analysis of Synchronous Sequential circuits, Design of Synchronous and Asynchronous Counters, Shift registers & Ring counters, Analysis and design of Finite State Machines. Timing issues in synchronous circuits.

Logic Families: Performance metrics of logic gates, Basic Transistor-Transistor Logic and CMOS logic.

Unit IV: 10 lecture hours

Asynchronous Sequential Circuits: Fundamentals of Asynchronous Sequential circuits. Analysis and

design of Asynchronous Sequential circuits. Pulse mode and Fundamental-mode Circuits. Cycles, Races and Hazards in asynchronous circuits.

Text Books

- 1. William I. Fletcher, —An Engineering approach to Digital Designl, Prentice Hall of India
- 2. C.H.Roth, —Fundamentals of Logic Design, Thomson
- 3. Morris Mano, "Digital Design", PHI, 2nd Ed.

Reference Books/Materials

- 1. J. Nagrath, "Electronics, Analog & Digital", PHI.
- 2. B. S. Nai, "Digital Electronics and Logic Design", PHI.
- 3. Balabanian and Carlson, "Digital Logic Design Principles", Wiley Pub.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping b	etween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Create the appropriate truth table from a description of a combinational logic function.	PO1
CO2	Create a gate-level implementation of a combinational logic function described by a truth table using and/or/not gates, multiplexers or ROMs, and analyze its timing behavior.	PO2
CO3	Create a state transition diagram from a description of a sequential logic function and then convert the diagram into an implementation of a finite-state machine with the appropriate combinational and sequential components.	PO3
CO4	Describe the operation and timing constraints for latches and registers.	PO4
CO5	Draw a circuit diagram for a sequential logic circuit and	PO5

	analyze its timing properties (input setup and hold times,	
	minimum clock period, output propagation delays).	
	Evaluate combinational and sequential logic designs using	
CO6	various metrics: switching speed, throughput/latency, gate	PO3
	count and area, energy dissipation and power.	

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC210 A	Digital Electronics	2	2	3	3	3								2		3

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS219A	Foundation Of Computer Systems	L	T	P	С			
Version 1.0		3	1	0	4			
Pre-requisites/Exposure	Some concepts from basic math – algebra, geometry, pre calculus							
Co-requisites								

Course Objectives

- 1. Use mathematically correct terminology and notation.
- 2. Construct correct direct and indirect proofs.
- 3. Use division into cases in a proof.
- 4. Use counterexamples.
- 5. Apply logical reasoning to solve a variety of problems.

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Acquire an understanding set theory, functions, and relations.
- CO2. Develop the given problem as graph networks and solve with techniques of graph theory.
- CO3. Understanding the language of mathematical logic and expressing statements in terms of logic.
- CO4. Derive the solution for a given problem using deductive logic and prove the solution based on logical inference.
- CO5. Gaining insight into applications of discrete mathematics to various practical problems.

Catalog Description

The course is an introduction to discrete mathematics as a foundation to work within the fields of computer science, information technologies, and software development.

Course Content

Unit I: 10 lecture hours

Set Theory: Introduction to set theory, Set operations, Algebra of sets, Duality, Finite and Infinite sets, Classes of sets, Power Sets, Multi sets, Cartesian Product, Representation of relations, Types of relation, Equivalence relations and partitions, Partial ordering relations and lattices Function and its types, Composition of function and relations, Cardinality and inverse relations

Unit II: 12 lecture hours

Graphs And Trees: Introduction to graphs, Directed and Undirected graphs, Homomorphic and Isomorphic graphs, Subgraphs, Cut points and Bridges, Multigraph and Weighted graph, Paths and circuits, Shortest path in weighted graphs, Eurelian path and circuits, Hamilton paths and circuits, Planar graphs, Euler's formula, Trees, Spanning trees, Binary trees and its traversals.

Unit III: 12 lecture hours

Propositional logic: Basic operations: AND(^), OR(v), NOT(~), Truth value of a compound statement, propositions, tautologies, contradictions, Validity of Arguments

Group theory: Definition and examples of a monoid, Semigroup, Groups and rings, Homomorphism, Isomorphism and Auto morphism, Subgroups and Normal subgroups, Cyclic groups, Co-Sets, Lagrange's theorem.

Unit IV: 10 lecture hours

Recursion and Recurrence Relation: linear recurrence relation with constant coefficients, Homogeneous solutions, Solutions, Total solution of a recurrence relation using generating functions.

Techniques Of Counting: Permutations with and without repetition, Combination.

Text Books

- 1. Keneth H. Rosen, "Discrete Mathematics and Its Applications", TMH.
- 2. C.L. Liu, "Elements of Discrete Mathematics", TMH.

Reference Books/Materials

- 1. Kolman, Busby & Ross, "Discrete Mathematical Structures", PHI.
- 2. NarsinghDeo, "Graph Theory with Application to Engineering and Computer Science", PHI.
- 3. J. P. Trembly& P. Manohar, "Discrete Mathematical Structures with Applications to Computer Science", McGraw Hill.
- 4. Vinay Kumar, "Discrete Mathematics", BPB Publications.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire an understanding set theory, functions, and relations.	PO1
CO2	Develop the given problem as graph networks and solve with techniques of graph theory.	PO2
CO3	Understanding the language of mathematical logic and expressing statements in terms of logic.	PO1
CO4	Derive the solution for a given problem using deductive logic and prove the solution based on logical inference.	PO3
CO5	Gaining insight into applications of discrete mathematics to various practical problems.	PO3

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mp lex pro ble	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Emp loya bilit y	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
ETCS219 A	Foundation of Computer Systems	3	3	2										2		1

2= moderately mapped

3=strongly mapped

ETCS217A	Data Structures	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

- 1. To be able to compute the efficiency of algorithms in terms of time and space complexities.
- 2. To understand concepts of searching and sorting algorithms.
- 3. Using various data structures viz. stacks, queues, linked list, trees and graphs to develop efficient algorithms through efficient representation of data and operations that can be applied.
- 4. To enable them to develop algorithms for solving problem by applying concepts of data structures.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Analyze the algorithms to determine the time and computation complexity and justify the correctness.
- CO2. Implement a given Search problem (Linear Search and Binary Search).
- CO3. Write algorithms concerning various data structures like Stack, Queue, Linked list, Graph search and traversal techniques and analyze the same to determine the time and computation complexity.
- CO4. Write an algorithm for Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap sort and compare their performance in term of Space and time complexity.

Catalog Description

This course imparts the basic concepts of data structures and algorithms. It enables them to write algorithms for solving problems with the help of fundamental data structures. The course of data structures help organizing the data in variety of ways to solve the problem efficiently. The course introduces the basic concepts about stacks, queues, lists, trees and graphs. It also discusses about daily problems like searching and sorting techniques

Course Content

Unit I: 8 lecture hours

Introduction to Data Structures: Definition of data structures and abstract data types, Static and Dynamic implementations, Examples and real life applications; Arrays: ordered lists, representation of arrays, sparse matrices, polynomial arithmetic

Running time: Analysis of Algorithms and their complexities: Time Complexities, Big – Oh - notation, Running Times, Best Case, Worst Case, Average Case, Factors depends on running time, Introduction to Recursion, Divide and Conquer Algorithm, Time & Space Tradeoff.

Unit II: 12 lecture hours

The Stacks: ADT Stack and its operation, Array based implementation of stacks, Linked List based implementation of stacks, Examples: Infix, postfix, prefix representation, Conversions, Applications, Algorithms and their complexities

Queues and Lists: ADT Queue and its operation, Array based implementation of linear Queues, Circular implementation of Queues, Linked Lists: Singly linked lists: Representation of linked lists in memory,

Traversing, Searching, Insertion into, Deletion from linked list Linked List implementation of Queues and Stacks Lists, Straight / circular implementation of doubly linked Queues / Lists, Priority Queues, Applications, Algorithms and their complexities

Unit III: 12 lecture hours

Trees: Basic Terminology, Binary Trees and their representation, expression evaluation, Complete Binary trees, Extended binary trees, traversing binary trees, Searching, Insertion and Deletion in binary search trees (with and without recursion), AVL trees, Threaded trees, B+ trees, algorithms and their analysis.

Graphs: Terminology and Representations, Graphs & Multigraphs, Directed Graphs, Sequential representation of graphs, Adjacency matrices, Transversal Connected Component and Spanning trees, Shortest path, algorithms and their analysis.

Unit IV: 8 lecture hours

Sorting Algorithms: Introduction, Sorting by exchange, selection sort, insertion sort, Bubble sort, Straight selection sort, Efficiency of above algorithms, Shell sort, Performance of shell sort, Merge sort, Merging of sorted arrays& Algorithms; Quick sort Algorithm analysis, heap sort: Heap Construction, Heap sort, bottom – up, Top – down Heap sort approach;

Searching Algorithms: Straight Sequential Search, Binary Search (recursive & non-recursive Algorithm

Text Books

- 1. E. Horowitz and S. Sahani, "Fundamentals of Data Structures", Galgotia Book source Pvt. Ltd.
- 2. R. L. Kruse, B. P. Leung, C. L. Tondo, "Data Structures and program design in C", PHI

Reference Books/Materials

- 1. Schaum's outline series, "Data Structure", McGraw Hills.
- 2. Y. Langsamet. al., "Data Structures using C and C++", PHI.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Analyze the algorithms to determine the time and computation complexity	PO1
CO2	Implement a given Search problem (Linear Search and Binary Search).	PO4
CO3	Write algorithms concerning various data structures	PO5
CO4	Write an algorithm for internal and external sorting	PO2

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	Α
		n	r	e	0	0	h	n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d	e	v	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	_	1	P	e	c	у
		e	e	n	С	n	g	0	s	i	n	c	1	s	r	s	s	S
		e	m		t	t	i	n		d	i	t	0		a	S		i
		r	a	d	i	О	n	m		u	С	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	S	S	a	a		r	О	g	a		e	e		
		n	s	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		w	s	m	g	e	S	s		a		e	i			0		
		1		e	a		0	u		m		n	n			n		
		e		n	t		c	S		w		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	0			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	P	P	D	D	D	D								
e	e	O	O	O	O	O	P O	P O	P O	P O	РО	PO	PO	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3	O4	O5

ETCS 217A	Data Struct ures	2	2		3	3										2		3	
--------------	------------------------	---	---	--	---	---	--	--	--	--	--	--	--	--	--	---	--	---	--

2= moderately mapped

3=strongly mapped

ETCS 255A	Operating Systems Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Computer Organization & Architecture				
Co-requisites					

Course Objectives

- 1. To learn the mechanisms of OS to handle processes and threads and their communication.
- 2. To learn the mechanisms involved in memory management in contemporary OS
- 3. To gain knowledge on distributed operating system concepts that includes architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols
- 4. To know the components and management aspects of concurrency management
- 5. To learn to implement simple OS mechanisms

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Describe the important computer system resources and the role of operating system in their management policies and algorithms.
- CO2. To understand various functions, structures and history of operating systems and should be able to specify objectives of modern operating systems and describe how operating systems have evolved over time.
- CO3. Understanding of design issues associated with operating systems.
- CO4. Understand various process management concepts including scheduling, synchronization, and deadlocks.
- CO5. To understand concepts of memory management including virtual memory.
- CO6. To understand issues related to file system interface and implementation, disk management

Catalog Description

Based on theory subject **ETCS 211A**, the following experiments are to be performed. It enables them to write algorithms for solving problems with the help of fundamental operating systems.

List of Experiments (Indicative)

Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority Write a C program to simulate multi-level queue scheduling algorithm considering the following scenario. All the processes in the system are divided into two categories — system processes and user processes. System processes are to be given higher priority than user processes. Use FCFS scheduling for the processes in each queue. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. Write a C program to simulate the following file allocation strategies. a) Sequential b) Indexed c) Linked Write a C program to simulate the MVT and MFT memory management techniques. Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate paging technique of memory techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b) LRU c) LFU 2 lab hours			
considering the following scenario. All the processes in the system are divided into two categories – system processes and user processes. System processes are to be given higher priority than user processes. Use FCFS scheduling for the processes in each queue. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. Write a C program to simulate the following file allocation strategies. a) Sequential b) Indexed c) Linked Write a C program to simulate the MVT and MFT memory management techniques. Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate the following file organization techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	1	scheduling algorithms to find turnaround time and waiting time. a)	4 lab hours
display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. Write a C program to simulate the following file allocation strategies. a) Sequential b) Indexed c) Linked Write a C program to simulate the MVT and MFT memory management techniques. Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate paging technique of memory techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	2	considering the following scenario. All the processes in the system are divided into two categories – system processes and user processes. System processes are to be given higher priority than user processes.	2 lab hours
a) Sequential b) Indexed c) Linked Write a C program to simulate the MVT and MFT memory management techniques. Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate the following file organization techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	3	display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and	4 lab hours
techniques. Write a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate the following file organization techniques a) Single level directory b) Two level directory c) 4 lab hours Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	4		4 lab hours
allocation techniques a) Worst-fit b) Best-fit c) First-fit Write a C program to simulate paging technique of memory management Write a C program to simulate the following file organization techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	5		4 lab hours
Write a C program to simulate the following file organization techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	6		2 lab hours
techniques a) Single level directory b) Two level directory c) Hierarchical Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	7		4 lab hours
deadlock avoidance. Write a C program to simulate page replacement algorithms a) FIFO b)	8	techniques a) Single level directory b) Two level directory c)	4 lab hours
10 1 2 1	9		4 lab hours
	10		2 lab hours

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam

Weightage (%) 10	10	20	10	50	
------------------	----	----	----	----	--

	Mapping between COs and Pos								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Describe the important computer system resources and the role of operating system in their management policies and algorithms.	PO1							
CO2	To understand various functions, structures and history of operating systems and should be able to specify objectives of modern operating systems and describe how operating systems have evolved over time.	PO1							
СОЗ	Understanding of design issues associated with operating systems.	PO3							
CO4	Understand various process management concepts including scheduling, synchronization, and deadlocks.	PO4							
CO5	To understand concepts of memory management including virtual memory.	PO5							
CO6	To understand issues related to file system interface and implementation, disk management.	PO3							

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	О	0	h	n	t	n	О	r	i	k	e	r	t	n
		g	О	S	n	d	e	V	h	d	m	0	f	i	S	О	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	-	1	P	e	c	У
		e	e	n	c	n	g	О	S	i	n	c	1	S	r	S	S	S
		e	m	/	t	t	i	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	0		
		n	a	v	V	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K	У	1	S	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		w	S	m	g	e	S	S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					S													
Cours	Cours	P	P	P	P	P	P	P	P	P	РО	РО	РО				PS	PS
e	e	0	0	0	0	0	0	0	0	0	10	11	12	PS	PS	PS	O4	O5
Code	Title	1	2	3	4	5	6	7	8	9				O1	O2	О3		

ETCS 255A	Opera ting Syste	2	3	3	3					2	2	
20011	ms Lab											

2= moderately mapped

3=strongly mapped

ETEC256A	Digital Electronics Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites		•	•	•	

Course Objectives:

- 1. Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).
- 2. Design simple digital systems based on these digital abstractions, using the "digital paradigm" including discrete sampled information.
- 3. Use the "tools of the trade": basic instruments, devices and design tools.
- 4. Work in a design team that can propose, design, successfully implement and report on a digital systems project.
- 5. Communicate the purpose and results of a design project in written and oral presentations.

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Identify relevant information to supplement to the Digital Electronic ETEC210A course.
- CO2. Construct basic combinational circuits and verify their functionalities

- CO3. To understand the basic digital circuits and to verify their operation.
- CO4. To understand the concepts of flipflops, registers and counters.
- CO5. To understand how gates are the basic building blocks for digital world.

Catalogue Description:

Labs on digital logic, PALs, flip-flops, timing, counters, synchronization, and finite-state machines prepare students for the design and implementation of a final project of their choice, e.g., games, music, digital filters, wireless communications, graphics, etc. Extensive use of Verilog for describing and implementing digital logic designs. Students engage in extensive written and oral communication exercises

Course Content

List of experiments:

- Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
- Implementation of the given Boolean function using logic gates in both SOP and POS forms.
- Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
- Implementation and verification of Decoder/De-multiplexer and Encoder using logic gates.
- Implementation of 4x1 multiplexer using logic gates.
- Implementation of 4-bit parallel adder using 7483 IC.
- Design, and verify the 4-bit synchronous counter.
- Design, and verify the 4-bit asynchronous counter.
- Static and Dynamic Characteristic of NAND and Schmitt-NAND gate(both TTL and MOS)
- Study of Arithmetic Logic Unit

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping l	petween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Identify relevant information to supplement to the DigitalElectronic ETEC210A course	PSO1, PSO3
CO2	Construct basic combinational circuits and verify their functionalities	PO2
СОЗ	To understand the basic digital circuits and to verify their operation.	PO1
CO4	To understand the concepts of flipflops, registers and counters.	PO4
CO5	To understand how gates are the basic building blocks for digital world.	PO3

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC256 A	Digital Electronics Lab	2	2	3	2									1		3

2= moderately mapped

3=strongly mapped

ETCS257A	Data Structures Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

- 1. To be able to compute the efficiency of algorithms in terms of time and space complexities.
- 2. To understand concepts of searching and sorting algorithms.
- 3. Using various data structures viz. stacks, queues, linked list, trees and graphs to develop efficient algorithms through efficient representation of data and operations that can be applied.
- 4. To enable them to develop algorithms for solving problem by applying concepts of data structures.

Course Outcomes

On completion of this course, the students will be able to

CO1. Analyze the algorithms to determine the time and computation complexity and justify the correctness.

CO2. Implement a given Search problem (Linear Search and Binary Search).

CO3. Write algorithms concerning various data structures like Stack, Queue, Linked list, Graph search and traversal techniques and analyze the same to determine the time and computation complexity.

CO4. Write an algorithm for Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap sort and compare their performance in term of Space and time

Catalog Description

This course complements ETCS 217A. It enables them to write algorithms for solving problems with the help of fundamental data structures. The list of experiments help organizing the data in variety of ways using data structures and to solve the given problem efficiently. It also discusses about daily problems like searching and sorting techniques

List of Experiments (Indicative)

1	Write a program for multiplication and transpose of array.	2 lab hours
2	Write a program to compute the transpose of a sparse matrix	2 lab hours
3	Write a program to implement push and pop operation in Stack.	2 lab hours
4	Write a program to convert a Infix notation to post fix notation using stacks	2 lab hours
5	Write a program to evaluate postfix notation using stacks	2 lab hours
6	Write a program to implement a linear queue	2 lab hours
7	Write a program for swapping two numbers using call by value and call by reference strategies.	2 lab hours
8	Write a program to insert and delete a node in linked list. The number of nodes to inserted and deleted should be governed by user.	3 lab hours
9	Write a program to implement a linear search arrays and linked list.	2 lab hours

10	Using iteration and recursion concepts write programs for finding the element in the array using the Binary search method.	2 lab hours
11	Write the programs to implement bubble sort.	2 lab hours
12	Write a program using iteration and recursion concepts for quick sort.	2 lab hours
13	Write a program to implement merge sort.	2 lab hours
14	Write a program to simulate various tree traversal techniques.	3 lab hours
15	Write a program to simulate various BFS and DFS.	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Analyze the algorithms to determine the time and computation complexity	PO1							
CO2	Implement a given Search problem (Linear Search and Binary Search).	PO4							
CO3	Write algorithms concerning various data structures	PO5							
CO4	Write an algorithm for internal and external sorting	PO2							

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0	h	n	t	n	0	r	i	k	e	r	t	n
			0	s	n	d	e	V	h	d	m	0	f	i	s	0	h	a
		g i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	y
		e	e	n	c	n	g	0	s	i	n	c	1	s	r	s	s	S
		e	m	/	t	t	i	n	5	d	i	t	0		a	S		i
		r	a	d	i	0	n	m		u	c	m	n		c	i		s
		i	n	e	n	0	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	a		
		K	у	1	S	S	a	a		r	О	g	a		e	1		
		n	S	О	t	a	n	n		t	n	e	r		s	R		
		О	i	p	i	g	d	d		e		m	n			e		
		w	S	m	g	e	S	S		a		e	i			S		
		1		e	a		О	u		m		n	n			p		
		e		n	t		c	S		W		t	g			О		
		d		t	i		i	t		О		a				n		
		g		О	О		e	a		r		n				S		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				b		
				О	О			a				i				i		
				1	f			b				n				1		
				u	c			i				a				i		
				t	О			1				n				t		
				i	m			i				С				i		
				О	p			t				e				e		
				n	1			У								S		
				S	e													
					X													
					p													
					r													
					0 b													
					b 1													
					e m													
					m s													
		P	P	P	P	P	P	P	P	P								
Course	Cours	O	O	O	O	O	P O	O	O	O	PO	PO	PO	PS	PS	PS	PS	PS
Code	e Title	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	O4	O5

ETCS2 57A	Data Struct ures	2	2	3	3					2	4
	Lab										

2= moderately mapped

3=strongly mapped

ETCS365A	Computer Networks Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

- 1. Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP.
- 2. Provides a practical approach to assemble Ethernet/Internet networking.
- 3. Understanding of the layered architecture and working of important protocols

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the structure and organization of computer networks; including the division into network layers, role of each layer, and relationships between the layers.
- CO2. Execute and evaluate network administration commands and demonstrate their use in different network scenarios.
- CO3. Demonstrate and measure different network scenarios and their performance behavior.
- CO4. Design and setup an organization network using packet tracer.

Catalog Description

This course complements ETCS304A. It enables them to select and design network for solving real life problem with optimal solution(s). The list of experiments helps to understand details of component of network and protocol.

List of Experiments (Indicative)

1	Study of Network devices in detail	2 lab hours
2	Connect the computers in Local Area Network using packet tracer	2 lab hours
3	Implementation of Data Link Framing method - Character Count.	2 lab hours
4	Implementation of Data link framing method - Bit stuffing and Destuffing.	2 lab hours
5	Implementation of Error detection method - even and odd parity.	2 lab hours
6	Implementation of Error detection method - CRC Polynomials.	2 lab hours
7	Implementation of Data Link protocols - Unrestricted simplex protocol	2 lab hours
8	Implementation of data link protocols - Stop and Wait protocol	2 lab hours
9	Implementation of routing algorithms - Dijkstra's algorithm	2 lab hours
10	Study of Network IP Addressing using packet tracer	2 lab hours
11	Design TCP client and server application to transfer file	2 lab hours
12	Design UDP client and server application to transfer file	2 lab hours
13	Working on Network Protocol Analyzer Tool (Ethereal/Wireshark)	4 lab hours
14	Working on NMAP Tool for Port scanning	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the structure and organization of computer networks; including the division into network layers, role of each layer, and relationships between the layers.	PO2
CO2	Execute and evaluate network administration commands and demonstrate their use in different network scenarios.	PO3
CO3	Demonstrate and measure different network scenarios and their performance behavior.	PO5
CO4	Design and setup an organization network using packet tracer.	PO8

		Е	P	D	С	λ.	Т	E	Е	I	С	P	L	S	В	P	E	٨
					0	M	h		t				i	s k			E	A
		n	r	e		o d	e		ι h	n d	0 m	r o	f	i	e	r o	t h	n a
		g i	o b	s i	n d	e	e	i	i	i	m m	j	e	1	s t	f	i	1
			1		u				c	V	u	e e	-	1	r P	e	c	
		n	e	g n	ct	r	n		s	i	n	c	1	S	r	s	s	У
		e e	m	/	in	n t	g i	o n	3	d	i	t	0	8	a	S	8	s i
		r	a	d	V	0	n	m		u	c	m	n		c	i		S
		i	n	e	e	o	e	e		a	a	a	g		t	0		5
		n	a	v	st	1	e	n		1	t	n	L		i	n		
		g	1	e	ig	u	r	t		0	i	a	e		c	R		
		K	y	1	at	s	a			r	0	g	a		e	e		
		n	S	0	io	a	n	n		t	n	e	r		s	s		
		О	i	p	n	g	d			e		m	n			p		
		W	s	m	s	e	S	s		a		e	i			0		
		1		e	O		o	u		m		n	n			n		
		e		n	f		c	s		W		t	g			S		
		d		t	c		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	m		t	i		k		d				i		
				S	pl		у	n				f				1		
				О	e			a				i				i		
				1	X			b				n				t		
				u	p			i				a				i		
				t	r			1				n				e		
				i	0			i				С				S		
				О	bl			t				e						
				n	e			У										
				S	m													
					S													
Cours	Cours	P	P	P		P	P	P	P	P	РО	РО	РО				PS	PS
e	e	0	0	0	PO4	0	O	O	0	0	10	11	12	PS	PS	PS	O4	O5
Code	Title	1	2	3		5	6	7	8	9				O1	O2	O3		
	Comp																	
	uter																	
ETCS	Netw		3	3		2			3					3	3			3
365A	orks		3	3					3									
	Lab																	

¹⁼weakly mapped

²⁼ moderately mapped

³⁼strongly mapped

Semester IV

ETCS222A	Computer Organization and Architecture	L	T	P	С
Version 1.0		3	1	ı	4
Pre-requisites/Exposure	Basics of Microprocessor Systems				
Co-requisites	-				

Course Objectives

- 1. How Computer Systems work & the basic principles?
- 2. Instruction Level Architecture and Instruction Execution
- 3. The current state of art in memory system design
- 4. How I/O devices are accessed and its principles?
- 5. To provide the knowledge on Instruction Level Parallelism
- 6. To impart the knowledge on micro programming
- 7. Concepts of advanced pipelining techniques.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the concepts of microprocessors, their principles and practices.
- CO2. Write efficient programs in assembly language of the 8086 family of microprocessors.
- CO3. Organize a modern computer system and be able to relate it to real examples.
- CO4. Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.
- CO5. Implement embedded applications using Emulator.

Catalog Description

Computer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance, and cost goals. Computer organization defines the constituent parts of the system, how they are interconnected, and how they interoperate in order to implement the architectural specification. In this course, you will learn the basics of hardware components from basic gates to memory and I/O devices, instruction set architectures and assembly language, and designs to improve performance.

Unit I: 12 lecture hours

Functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU–registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study – instruction sets of some common CPUs.

Data representation: signed number representation, fixed and floating point representations, character representation. Computer arithmetic – integer addition and subtraction, ripple carry adder, carry look- ahead adder, etc. multiplication – shift-andadd, Booth multiplier, carry save multiplier, etc. Division restoring and non-restoring techniques, floating point arithmetic.

Unit II: 10 lecture hours

Introduction to x86 architecture.

CPU control unit design: hardwired and micro-programmed design approaches, Case study – design of a simple hypothetical CPU.

Memory system design: semiconductor memory technologies, memory organization.

Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, I/O transfers—program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes—role of interrupts in process state transitions, I/O device interfaces — SCII, USB

Unit III: 8 lecture hours

Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.

Parallel Processors: Introduction to parallel processors, Concurrent access to memory and cache coherency.

Unit IV: 10 lecture hours

Memory organization: Memory interleaving, concept of hierarchical memory organization, cache memory, cache size vs. block size, mapping functions, replacement algorithms, write policies.

Text Books

- 1. "Computer Organization and Design: The Hardware/Software Interface", 5th Edition by David A. Patterson and John L. Hennessy, Elsevier.
- 2. "Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraw Hill Higher Education.

Reference Books/Materials

- 1. "Computer Organization and Design: The Hardware/Software Interface", 5th Edition by David A. Patterson and John L. Hennessy, Elsevier.
- 2. "Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraw Hill Higher Education.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the concepts of microprocessors, their principles and practices.	PO2
CO2	Write efficient programs in assembly language of the 8086 family of microprocessors.	PO3
СОЗ	Organize a modern computer system and be able to relate it to real examples.	PO4
CO4	Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.	PO9
CO5	Implement embedded applications using Emulator.	PO5

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	App licat ion of Con cept s	Proj ect Ma nag eme nt	Ethi cal and Pro fess ion al Issu es
Cours e Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS 222A	Computer Organizatio n and Architecture		2	3	3	2				3				3		

2= moderately mapped

3=strongly mapped

ETCS220A	Analysis And Design Of Algorithms	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Advanced Computer Programming				
Co-requisites					

Course Objectives

- 1. The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.
- 2. Students should be able to understand the necessary divide and conquer algorithms.
- 3. To familiarize students with greedy and dynamic programming concepts

4. Student should be able to come up with analysis of efficiency and proofs of correctness.

Course Outcomes

On completion of this course, the students will be able to

- CO 1 Analyze the asymptotic performance of algorithms.
- CO 2 Write rigorous correctness proofs for algorithms.
- CO 3 Demonstrate a familiarity with major algorithms and data structures.
- CO 4 Apply important algorithmic design paradigms and methods of analysis.
- CO 5 Synthesize efficient algorithms in common engineering design situations.

Catalog Description

This course introduces basic methods for the design and analysis of efficient algorithms emphasizing methods useful in practice. Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures. The following important computational problems will be discussed: sorting, searching, elements of dynamic programming and greedy algorithms, advanced data structures, graph algorithms (shortest path, spanning trees, tree traversals), string matching, elements of computational geometry, NP completeness

Course Content

Unit I: 8 lecture hours

Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Time and space trade- offs, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem.

Unit II: 12 lecture hours

Fundamental Algorithmic Strategies: Brute -Force, Greedy, Dynamic Programming, Branch-and-Bound and Backtracking methodologies for the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack TSP. Heuristics – characteristics and their application domains.

Unit III: 12 lecture hours

Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

Unit IV: 8 lecture hours

Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques. Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE

Text Books

- 1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.
- 2. Fundamentals of Algorithms E. Horowitz et al.

Reference Books/Materials

- 1. Schaum's outline series, "Data Structure", McGraw Hills.
- 2. Y. Langsamet. al., "Data Structures using C and C++", PHI.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendanc	Mid Term	Presentation/	End Term
		e	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Analyze the asymptotic performance of algorithms.	PO1								

CO2	Write rigorous correctness proofs for algorithms.	PO4
CO3	Demonstrate a familiarity with major algorithms and data structures.	PO5
CO4	Apply important algorithmic design paradigms and methods of analysis.	PO2
CO5	Synthesize efficient algorithms in common engineering design situations.	PSO1

		En	Pro	Desi	Cond	M	T	Envir	Е	Ind	Com	Proj	Life	Appl	Inno	Ethi
		gin	ble	gn/d	uct	О	he	onme	t	ivi	mun	ect	-	icati	vatio	cs
		eeri	m	evel	inves	d	en	nt	h	dua	icati	man	long	on	n	and
		ng	ana	opm	tigati	er	gi	and	i	1 or	on	age	Lear	of	and	Com
		Kn	lysi	ent	ons	n	ne	sustai	c	tea		men	ning	Con	Indu	mun
		owl	S	of	of	to	er	nabili	S	m		t		cept	stry	icati
		edg		solu	comp	ol	an	ty		wo		and		S	Frie	on
		e		tion	lex	us	d			rk		fina			ndly	Skill
				S	probl	a	so					nce				S
					ems	g	ci									
						e	et									
							у									
Cours e Code	Course Title	PO1	PO2	PO3	PO4	P O 5	P O6	PO7	P O 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ETCS 220A	Analysi s and design of algorith ms	2	2		3	3								3		

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETEC218A	Communication System	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Advanced of Computer communication				
Co-requisites					

Course Objectives

- 1. Define mobile technologies in terms of hardware, software, and communications.
- 2. Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.
- 3. Evaluate the effectiveness of different mobile computing frameworks.
- 4. Describe how mobile technology functions to enable other computing technologies.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.
- CO2. Evaluate the effectiveness of different mobile computing frameworks.
- CO3. Describe how mobile technology functions to enable other computing technologies.

Catalog Description

This course will cover the nomenclature and implementation of mobile computing and mobile communication. Coverage mobile systems will include 2G, 2.5G, 3G, 3G+, and 4G communication systems, mobile satellite communication networks, mobile IP, mobile TCP, digital audio-video broadcasting, and mobile TV. This course will also provide a systematic explanation of mobile computing as a discrete discipline and will provide an in-depth coverage of mobile systems and devices, mobile operating systems used for application development, mobile databases, client-server computing agents, application servers, security protocols, and mobile Internet, and ad-hoc and sensor networks.

Course Content

Unit I: 12 lecture hours

Introduction to Wireless Communication System: Evolution of mobile communications, Mobile Radio

System around the world, Types of Wireless communication System, Comparison of Common wireless system, Trends in Cellular radio and personal communication. Second generation Cellular Networks, Third Generation (3G) Wireless Networks, Wireless Local Loop(WLL), Wireless Local Area network(WLAN), Bluetooth and Personal Area Networks.

Unit II: 8 lecture hours

Cellular system, Hexagonal geometry cell and concept of frequency reuse, Channel Assignment Strategies Distance to frequency reuse ratio, Channel & co-channel interference reduction factor, S/I ratio consideration and calculation for Minimum Co-channel and adjacent interference, Handoff Strategies, Umbrella Cell Concept, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular System-cell splitting, Cell sectorization , Repeaters, Micro cell zone concept, Channel antenna system design considerations.

Unit III: 12 lecture hours

Multiple Access Techniques: Introduction, Comparisons of multiple Access Strategies like TDMA, CDMA, FDMA, OFDM, and CSMA Protocols. Wireless Systems: GSM system architecture, Radio interface, Protocols, Localization and calling, Handover, Authentication and security in GSM, GSM speech coding, Concept of spread spectrum, Architecture of IS-95 CDMA system, Air interface, CDMA forward channels, CDMA reverse channels, Soft handoff, CDMA features, Power control in CDMA, Performance of CDMA System, RAKE Receiver, CDMA2000 cellular technology, GPRS system architecture.

Unit IV: 8 lecture hours

Recent trends: Introduction to Wi-Fi, WiMAX, ZigBee Networks, Software Defined Radio, UWB Radio, Wireless Adhoc Network and Mobile Portability, Security issues and challenges in a Wireless network.

Text Books

1. Wireless Communication, Theodore S. Rappaport, Prentice hall

Reference Books/Materials

1. Wireless Communications and Networking, Vijay Garg, Elsevie

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam

Weightage (%) 10 10 20 10 50

Mapping betw	een COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.	PO1, PO2
CO2	Evaluate the effectiveness of different mobile computing frameworks.	PO3, PO4
СОЗ	Describe how mobile technology functions to enable other computing technologies.	PO10, PSO1, PSO3

		En gin eer ing Kn ow led ge	Pro ble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3

ETEC218 A	Communicatio n System	2	2	2	2						3			3		3	
--------------	--------------------------	---	---	---	---	--	--	--	--	--	---	--	--	---	--	---	--

2= moderately mapped

3=strongly mapped

ETCS 202A	Software Engineering	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	None				
Co-requisites					

Course Objectives

- 1. The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- 2. Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

On completion of this course, the students will be able to:

- CO1. To learn and understand the Concepts of Software Engineering
- CO2. To Learn and understand Software Development Life Cycle
- CO3. To apply the project management and analysis principles to software project development.
- CO4. To apply the design & testing principles to software project development.
- CO5. Ability to execute tests, design test cases, use test tools, etc.
- CO6. To Study about Software maintenance tools

Catalog Description

This course covers the fundamentals of software engineering, including understanding system requirements, finding appropriate engineering compromises, effective methods of design, coding, and

testing, team software development, and the application of engineering tools.

Course Content

Unit I: 10 lecture hours

Introduction: Software Crisis, Software Processes & Characteristics, Software life cycle models, Waterfall, Prototype, Evolutionary and Spiral Models

Software Requirements analysis & specifications: Requirement engineering, requirement elicitation techniques, requirements analysis using DFD, Data dictionaries & ER Diagrams, Requirement documentation, Nature of SRS, Characteristics & organization of SRS.

Unit II: 12 lecture hours

Software Metrics: Software measurements: What & Why, Token Count, Size Estimation like lines of Code & Function Count, Halstead Software Science Measures, Design Metrics, Data Structure Metrics, Information Flow Metrics, Cost Estimation Models: COCOMO, COCOMO-II.

System Design: Design Concepts, design models for architecture, component, data and user interfaces; Problem Partitioning, Abstraction, Cohesiveness, Coupling, Top Down and Bottom-Up design approaches; Functional Versus Object Oriented Approach, Design Specification.

Coding: TOP-DOWN and BOTTOM-UP structure programming, Information Hiding, Programming Style, and Internal Documentation, Verification.

Unit III: 11 lecture hours

Unified Approach and Unified Modeling Language: The Unified Approach: Layered Approach to OO Software Development, UML: UML Diagrams for Structure Modeling, UML Diagrams for Behavior Modeling, UML Diagram for Implementation and deployment modeling.

Software Reliability: Importance, Hardware Reliability & Software Reliability, Failure and Faults, Reliability Models, Basic Model, Logarithmic Poisson Model, Software Quality Models, CMM & ISO 9001.

Unit IV: 12 lecture hours

Software Testing: Testing process, Design of test cases, functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing, Path Testing,

Data flow and mutation testing, Unit Testing, Integration and System Testing, Debugging, Alpha & Beta Testing, Testing Tools & Standards.

Software Maintenance: Management of Maintenance, Maintenance Process, Maintenance Models, Regression Testing, Reverse Engineering, Software Re-engineering, Configuration Management, Documentation.

Text Books

- 1. K. K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International.
- 2. R. S. Pressman, "Software Engineering A practitioner's approach", McGraw Hill Int. Ed.
- 3. W.S. Jawadekar, "Software Engineering Principles and Practices", McGraw Hill

Reference Books/Materials

- 1. Stephen R. Schach, "Classical & Object Oriented Software Engineering", IRWIN, TMH.
- 2. James Peter, W. Pedrycz, "Software Engineering: An Engineering Approach", John Wiley & Sons.
- 3. I. Sommerville, "Software Engineering", Addison Wesley.
- 4. K. Chandrasehakhar, "Software Engineering & Quality Assurance", BPB.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs	
Course Outcomes (COs)	Mapped Program Outcomes

CO1	To learn and understand the Concepts of Software Engineering	PO1
CO2	To Learn and understand Software Development Life Cycle	PO1
CO3	To apply the project management and analysis principles to software project development.	PO3, PO11
CO4	To apply the design & testing principles to software project development.	PO3
CO5	Ability to execute tests, design test cases, use test tools, etc.	PO4
CO6	To Study about Software maintenance tools	PO2, PO5

								,			,					
		En	Pro	Desi	Cond	M	T	Envir	Е	Ind	Com	Proj	Life	Emp	Ethi	Kno
		gin	ble	gn/d	uct	od	h	onme	t	ivi	mun	ect	-	loya	cs	wled
		eeri	m	evel	inves	er	e	nt	h	dua	icati	man	long	bilit	and	ge
		ng	ana	opm	tigati	n	e	and	i	l or	on	age	Lear	У	Beh	
		Kn	lysi	ent	ons	to	n	sustai	c	tea		men	ning		avio	
		owl	S	of	of	ol	gi	nabili	S	m		t			r	
		edg		solu	comp	us	n	ty		wo		and				
		e		tion	lex	ag	ee			rk		fina				
				S	probl	e	r					nce				
					ems		a									
							n									
							d									
							so									
							ci									
							et									
							У									
Cours	Course	PO1	PO2	PO3	PO4	РО	P O	PO7	P O	PO9	PO10	PO11	PO12			
e Code	Title	101	102	103	104	5	6	107	8	10)	1010	1011	1012	PSO1	PSO2	PSO3
Code	Softwar															
ETCS 202A					2											
202A	e Enginee	3	3	3	3	3						2		3	2	3
	Enginee															
	ring															

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS 252A	Software Engineering Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	None				
Co-requisites					

Course Objectives

- 1. The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- 2. Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

On completion of this course, the students will be able to:

- CO1. To learn and understand the Concepts of Software Engineering
- CO2. To Learn and understand Software Development Life Cycle
- CO3. To apply the project management and analysis principles to software project development.
- CO4. To apply the design & testing principles to software project development.
- CO5. Ability to execute tests, design test cases, use test tools, etc.
- CO6. To Study about Software maintenance tools

Catalog Description

Based on theory subject **ETCS 202A**, the following experiments are to be performed. It enables students to understand the Software Engineering concept and use them practically to develop quality software.

List of Experiments (Indicative)

1	To identify the role of the software in today's world across a few significant domains related to day-to-day life Create SRS document of admission management for your university	2 lab hours
2	To identify the problem related to software crisis for a given scenario	2 lab hours
3	To identify the suitable software development model for the given scenario.	2 lab hours
4	To identify the various requirement development activities viz. elicitation, analysis, specification and verification for the given scenario	4 lab hours

5	To identify the various elicitation techniques and their usage for the Banking case study.	4 lab hours
6	Identify the elements in Software Requirements Specification for a given document.	2 lab hours
7	Draw E-R Diagram for Hockey League.	2 lab hours
8	Draw a context diagram and a level-1 diagram that represent the selling system at the store.	2 lab hours
9	Find out all software metrics for a Quadratic Equation program written in 'C'.	2 lab hours
10	Identify the design principle that is being violated in relation to the given scenario.	2 lab hours
11	To identify the usage of stubs or drivers in the context of an integration testing scenario.	2 lab hours
12	Identify the different types of performance testing.	2 lab hours
13	Identify the usage of regression testing.	2 lab hours
14	Write various white box test cases to test the internal behaviour of above program.	2 lab hours
15	Write various Black box test cases to test the functionalities of above program.	2 lab hours

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term	
			Exam	Assignment/ etc.	Exam	

Weightage (%) 10	10	20	10	50
------------------	----	----	----	----

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	To learn and understand the Concepts of Software Engineering	PO1					
CO2	To Learn and understand Software Development Life Cycle	PO1					
СОЗ	To apply the project management and analysis principles to software project development.	PO3, PO11					
CO4	To apply the design & testing principles to software project development.	PO3					
CO5	Ability to execute tests, design test cases, use test tools, etc.	PO4					
CO6	To Study about Software maintenance tools	PO2, PO5					

		En	Pro	Desi	Cond	M	T	Envir	Е	Ind	Com	Proj	Life	Emp	Ethi	Kno
		gin	ble	gn/d	uct	od	h	onme	t	ivi	mun	ect	-	loya	cs	wled
		eeri	m	evel	inves	er	e	nt	h	dua	icati	man	long	bilit	and	ge
		ng	ana	opm	tigati	n	e	and	i	1 or	on	age	Lear	у	Beh	
		Kn	lysi	ent	ons	to	n	sustai	c	tea		men	ning		avio	
		owl	S	of	of	ol	gi	nabili	S	m		t			r	
		edg		solu	comp	us	n	ty		wo		and				
		e		tion	lex	ag	ee			rk		fina				
				S	probl	e	r					nce				
					ems		a									
							n									
							d									
							so									
							ci									
							et									
							у									
Cours	Course	PO1	PO2	PO3	PO4	РО	P O	PO7	P O	PO9	PO10	PO11	PO12			

e Code	Title					5	6	8			PSO1	PSO2	PSO3
ETCS 252A	Softwar e Enginee ring Lab	3	3	3	3	3				2	3	2	3

2= moderately mapped

3=strongly mapped

ETCS 260A	Computer Organization & Architecture Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Microprocessor Systems				
Co-requisites					

Course Objectives

- 1. Develop and assemble assembly programs.
- 2. Identify and use proper assembler directives.
- 3. Design simple assembly programs.
- 4. Write programs that interface with a programming language.
- 5. Appreciate the System Software development environment.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the concepts of microprocessors, their principles and practices.
- CO2. Write efficient programs in assembly language of the 8086 family of microprocessors.
- CO3. Organize a modern computer system and be able to relate it to real examples.
- CO4. Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.

CO5. Implement embedded applications using Emulator.

Catalog Description

This course is an attempt to familiarize students with some of the important Assemblers available in the Windows environment. Students may use any of these tools available. Students may also find that assembler directives used by these programs may differ. Assembly and C Programming helps students greatly in System Software implementation and giving understanding of the machine.

List of Experiments (Indicative)

1	Design and simulate ripple carry adders	2 lab hours
2	Design and simulate carry look ahead adders	2 lab hours
3	Design and simulate Wallace tree adders	2 lab hours
4	Synthesis of various flip-flops.	2 lab hours
5	Design and simulate various registers and counters	2 lab hours
6	Design and simulate combinational multipliers	3 lab hours
7	Design and simulate Booth's Multiplication	3 lab hours
8	Design and simulate arithmetic logic unit	3 lab hours
9	Design memory units and understand how it operates during read and write operation.	4 lab hours
10	Designing an associative cache for given parameters.	3 lab hours
11	Design a CPU to show the basic top-level functionality, organization and architecture of a computer.	4 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the concepts of microprocessors, their principles and practices.	PO2
CO2	Write efficient programs in assembly language of the 8086 family of microprocessors.	PO3
CO3	Organize a modern computer system and be able to relate it to real examples.	PO4
CO4	Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.	PO9
CO5	Implement embedded applications using Emulator.	PO5

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Cours e Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS 260A	Computer organizatio n & architecture		2	3	3	2				3				3		3

lab								

1=weakly mapped 2= moderately mapped

3=strongly mapped

ETCS262A	Analysisand Designof Algorithms Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical learning				
Co-requisites					

Course Objectives

- 1. To understand concept of different sorting algorithms.
- 2. To understand the concept of dynamic programming.
- 3. To understand concept of divide and conquer.
- 4. To understand Dictionary (ADT)
- 5. To understand concept of greedy algorithms.
- 6. To understand concept & features like max heap, min heap

Course Outcomes

On completion of this course, the students will be able to

- CO 1 Student will be able to implement optimal solution for various dynamic problems.
- CO 2 To understand various sorting techniques.
- CO 3 Analyze working of various operations on graphs.
- CO 4 To understand concept of string matching in data structure

Course Content

List of Experiments

1	To analyze time complexity of insertion sort	2 lab hours
2	To analyze time complexity of Quick sort	2 lab hours
3	To analyze time complexity of merge sort	2 lab hours
4	Implement Largest Common Subsequence.	2 lab hours
5	To Implement Optimal Binary Search Tree.	2 lab hours
6	To Implement Matrix Chain Multiplication.	2 lab hours
7	To Implement Strassen's matrix multiplication Algorithm.	2 lab hours
8	To implement Knapsack Problem.	2 lab hours
9	To implement Activity Selection Problem.	2 lab hours
10	To implement Dijkstra's Algorithm.	2 lab hours
11	To implement Warshall's Algorithm.	2 Labs
12	To implement Bellman Ford's Algorithm.	2 Labs
13	To implement Depth First Search Algorithm.	1 Lab
14	To implement Breadth First Search Algorithm.	1 Lab
15	To implement NaïveString MatchingAlgorithm.	1 Lab
16	To implement Rabin Karp String MatchingAlgorithm	1 Lab

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Student able to implement program for graph representation.	PO2
CO2	To understand operations like insert and search record in the database.	PO3
CO3	Analyze working of various operations on AVL Tree.	PO5
CO 4	To understand concept of file organization in data structure	PSO1, PO9

		En gin eeri ng Kn owl edg e	Proble m ana lysi s	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mp lex pro ble ms	Mo der n too l usa ge	Th e eng ine er and soc iety	En vir on me nt and sus tain abil ity	Ethics	Ind ivi dua l or tea m wo rk	Com mun icati on	Proj ect man age ment and fina nce	Life- long Lear ning	Emp loya bilit y	Ethi cs and Beha viou r	Kno wled ge
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO

								1	2	3
ETCS262 A	Analysis and design of algorithm s Lab	2	3	3		3		3		

2= moderately mapped

3=strongly mapped

Semester V

ETCS214A	Theory of Computation	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Discrete Mathematics				
Co-requisites					

Course Objectives

- 1. Develop a formal notation for strings, languages and machines.
- 2. Design finite automata to accept a set of strings of a language.
- 3. Prove that a given language is regular and apply the closure properties of languages.
- 4. Design context free grammars to generate strings from a context free language and convert them into normal forms.
- 5. Prove equivalence of languages accepted by Pushdown Automata and languages generated by context free grammars.
- 6. Identify the hierarchy of formal languages, grammars and machines.
- 7. Distinguish between computability and non-computability and Decidability and undecidability.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Write a formal notation for strings, languages and machines.
- C02. Design finite automata to accept a set of strings of a language.
- CO3. Determine equivalence of languages accepted by Pushdown Automata and languages generated by context free grammars.
- CO4. Distinguish between computability and non-computability and Decidability and undecidability.

Catalog Description

This course provides a formal connection between algorithmic problem solving and the theory of languages and automata and develop them into a mathematical view towards algorithmic design and in general computation itself. The course should in addition clarify the practical view towards the applications of these ideas in the engineering part of computer science.

Course Content

Unit I: 12 lecture hours

Additional **Introduction** to formal proof: Inductive proofs, forms of proof, Finite Finite Non-deterministic Automata (FA). Deterministic Automata (DFA), Finite Automata (NFA), Finite Automata with Epsilon transitions.

Unit II: 8 lecture hours

Regular **Expression**: FA Regular Expressions, Proving languages be and not regular languages, Equivalence regular, Closure properties of and minimization Automata.

Unit III: 12 lecture hours

Context-Free Grammar (CFG): Parse Trees, Ambiguity in grammars and languages, of the Pushdown Definition Languages of Pushdown Automata, automata. of Equivalence Pushdown automata and CFG. Deterministic Pushdown Automata. Normal forms for CFG, Pumping Lemma for CFL, Closure Properties of CFL, Turing Machines, Programming Techniques for TM.

Unit IV: 8 lecture hours

A language that is not Recursively Enumerable (RE): An undecidable problem that is RE, Undecidable problems about Turing Machine, Post's Correspondence Problem.

Text Books

1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computations", second Edition, Pearson Education.

Reference Books/Materials

- 1. H.R. Lewis and C.H. Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson Education.
- 2. Thomas A. Sudkamp," An Introduction to the Theory of Computer Science, Languages and Machines", Third Edition, Pearson Education.
- 3. Raymond Greenlaw an H.James Hoover, "Fundamentals of Theory of Computation, Principles and Practice", Morgan Kaufmann Publishers.
- 4. MichealSipser, "Introduction of the Theory and Computation", Thomson Brokecole.
- 5. J. Martin, "Introduction to Languages and the Theory of computation" Third Edition, Tata McGraw Hill.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Write a formal notation for strings, languages and machines	PO1
CO2	Design finite automata to accept a set of strings of a language	PO3
CO3	Determine equivalence of languages accepted by Pushdown Automata and languages generated by context free grammars	PO2
CO4	Distinguish between computability and non-computability and Decidability and un-decidability	PO4

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS214 A	Theory of Computation	2	3	3	3									3		

2= moderately mapped

3=strongly mapped

ETCS 323A	Java Programming	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	NIL				
Co-requisites					

Course Objectives

- 1. Explain the concepts of object oriented paradigms to solve problems.
- 2. Appraise the concept of reusable software components using inheritance, packages and interfaces
- 3. Create scalable applications that can robustly handle errors and exceptions in runtime applications
- 4. Designing applications using pre-built frameworks.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Learn syntax of Java Programming Language and implement applications using it.
- CO2. Recognize features of object-oriented design such as encapsulation, polymorphism inheritance and composition of systems based on object identity.
- CO3. Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.
- CO4. Apply access control mechanism to safeguard the data and functions that can be applied by the object.
- CO5. Understand multithreading and evaluate exception handing to create new applications.
- CO6. Design GUI applications using pre-built frameworks available in Java.

Catalog Description

Java's unique architecture enables programmers to develop applications that can run across multiple platforms seamlessly and reliably. In this hands-on course, students gain extensive experience with Java and its object-oriented features. Students learn to create robust console and GUI applications and store and retrieve data from relational databases.

Course Content

Unit I: 12 lecture hours

Introduction to Java: Introduction to Java: Importance and features of Java, Keywords, constants, variables and Data Types, Operators and Expressions, Decision Making, Branching and Looping: if..else, switch,?: operator, while, do, for statements, labeled loops, jump statements: break, continue return. Introducing classes, objects and methods: defining a class, adding variables and methods, creating objects, constructors, class inheritance.

Unit II: 9 lecture hours

Arrays and Strings: Creating an array, one and two dimensional arrays, string array and methods, Classes: String and String Buffer classes, Wrapper classes: Basics types, using super, Multilevel hierarchy, abstract and final classes, Object class, Packages and interfaces, Access protection, Extending Interfaces, packages.

Unit III: 9 lecture hours

Exceptional Handling: Fundamentals exception types, uncaught exceptions, throw, throw, final, built in exception, creating your own exceptions, Multithreaded Programming: Fundamentals, Java thread model: priorities, synchronization, messaging, thread classes, Run able interface, inter thread Communication, suspending, resuming and stopping threads.

Unit IV: 10 lecture hours

Input/output Programming: Basics Streams, Byte and Character Stream, predefined streams, Reading and writing from console and files. Using Standard Java Packages (lang, util, io, net).

Event Handling: Different Mechanism, the Delegation Event Model, Event Classes, Event Listner Interfaces, Adapter and Inner Classes.

Text Books

1. Cay S. Horstmann, "Core Java Volume – I Fundamentals", Pearson.

Reference Books/Materials

1. Herbert Schildt, "Java – The Complete Reference", Oracle Press.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Learn to the syntax of Java Programming Language and implement applications in it.	PO2
CO2	Recognize features of object-oriented design such as encapsulation, polymorphism, inheritance and composition of systems based on object identity.	РО3
CO3	Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.	PO5
CO4	Apply access control mechanism to safeguard the data and functions that can be applied by the object	PO8
CO5	Understand multithreading and evaluate exception handing to create new applications.	PO1
CO6	Design GUI applications using pre-built frameworks available in Java.	PO9

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS323 A	Java Programmin g	2	3	3		2			2	3				3		2

2= moderately mapped

3=strongly mapped

ETCS 206A	Computer Graphics	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. Have knowledge and understanding of the structure of an interactive computer graphics system, and the separation of system components.
- 2. Have knowledge and understanding of geometrical transformations and 3D viewing.
- 3. Have knowledge and understanding of techniques for representing 3D geometrical objects.
- 4. Have knowledge and understanding of interaction techniques.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Acquire familiarity with the concepts and relevant mathematics of computer graphics.
- CO2. Implement various algorithms to scan, convert the basic geometrical primitives.
- CO3. Describe the importance of viewing and projections.
- CO4. To design basic graphics application programs.
- CO5. Be able to design applications that display graphic images to given specifications.

CO6. understand a typical graphics pipeline.

Course Overview:

This course aims at familiarizing the student with basic transformation techniques, Curves, Projections etc. The course contains various Clipping Algorithms. A focus will be put on knowledge of computer-based graphics creation so that at the student at end of the course is well equipped to pursue either an industrial or academic career in the area.

Course Content

Unit I: 8 lecture hours

Transformation, Projections, and Clipping Algorithms: Introduction to computer graphics, applications, hardware and software, 2D graphics, Bresenham's Line Drawing Algorithm, Homogeneous Coordinate System for 2D and 3D, Various 2D, 3D Transformation matrices (Translation, Scaling, Rotation, Shear), Rotation about an arbitrary point (2D), Rotation about an arbitrary axis (3D), Computing location of V.P, Clipping Algorithms, Sutherland-Cohen Clipping Algorithm.

Unit II: 12 hours

Curves and Surfaces: Bresenham's Circle Drawing Algorithm, Bezier Curves, 4 point and 5 point Bezier curves using Bernstein Polynomials, Conditions for smoothly joining curve segments, Bezier bicubic surface patch, B-Spline Curves, Cubic B-Spline curves using uniform knot vectors, Testing for first and second order continuities

Unit III: 12 hours

Projection and Solid Modelling: Parallel Projection, Oblique Projection on xy plane, Isometric Projection, Perspective Projection, One Vanishing Point (V.P.) projection from a point on z axis, Generation

of 2 V.P. Projection, Isometric Projection, Perspective, Projection, one vanishing Pint (VP), projection from 0 point on z axis, Generation of 2 VP Projector & Projections, Solid Modelling.

Unit IV: 8 hours

Shading and Hidden Surface Removal: Shading, Illumination Model for diffused Reflection, Effect of ambient lighting, distances, Specular Reflection Model, Computing Reflection Vector, Curved Surfaces, Polygonal Approximations, Gourard Shading, Phong Model, Hidden Surface Removal, Back Face Detection, Depth Buffer (Z-Buffer, A-Buffer) Method, Scan Line Method, Depth Sorting Method, Area Subdivision Method.

TEXT BOOKS:

1. Foley et. al., "Computer Graphics Principles & practice", Addison Wesley.

REFERENCES BOOKS:

- 1. D. Rogers and J. Adams, "Mathematical Elements for Computer Graphics", MacGraw-Hill International Edition.
- 2. D. Hearn and P. Baker, "Computer Graphics", Prentice Hall.
- 3. R. Plastock and G. Kalley, "Theory and Problems of Computer Graphics", Schaum's Series, McGraw Hill.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20 10		50

	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Acquire familiarity with the concepts and relevant mathematics of computer graphics.	PO1				
CO2	Implement various algorithms to scan, convert the basic geometrical primitives.	PO4				
CO3	Describe the importance of viewing and projections.	PO5				
CO4	Design basic graphics application programs.	PO2				

CO5	Be able to design applications that display graphic images to given specifications.	PO3
CO6	Understand a typical graphics pipeline.	PO1

		En gin eer ing Kn ow led ge	Proble m ana lysi s	De sig n/d eve lop me nt of sol uti ons	Con duc t inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lear ning	Em ploy abili ty	Ethi cs and Beh avi or	Kn owl edg e
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS 206A	Computer Graphics	2	2	2	3	3								3		

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS361A	Java Programming Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

- 1. Explain the concepts of object oriented paradigms to solve problems.
- 2. Appraise the concept of reusable software components using inheritance, packages and interfaces
- 3. Create scalable applications that can robustly handle errors and exceptions in runtime applications
- 4. Designing applications using pre-built frameworks.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Learn to the syntax of Java Programming Language and implement applications in it.
- CO2. Recognize features of object-oriented design such as encapsulation, polymorphism inheritance and composition of systems based on object identity.
- CO3. Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.
- CO4. Apply access control mechanism to safeguard the data and functions that can be applied by the object.
- CO5. Understand multithreading and evaluate exception handing to create new applications.
- CO6. Design GUI applications using pre-built frameworks available in Java.

Catalog Description

This course complements ETCS 323A. It enables them to write algorithms for solving problems with the help of fundamental data structures. The list of experiments help organizing the data in variety of ways using data structures and to solve the given problem efficiently. It also discusses about daily problems like searching and sorting techniques

List of Experiments (Indicative)

1	Create a java program to implement stack and queue.	2 lab hours
2	Write a java program to demonstrate dynamic polymorphism.	2 lab hours
3	Write a java program to implement various shapes using Abstract class	2 lab hours
4	Write a java program to demonstrate interfaces.	2 lab hours
5	Write a java program to show multithreaded producer and consumer application.	2 lab hours

6	Create a java programs that make use of all the 5 exception keywords.	4 lab hours
7	Convert the content of a given file into the uppercase content of the same file.	4 lab hours
8	Develop a scientific calculator using swings.	4 lab hours
9	Create a servlet that uses Cookies to store the number of times a user has visited your servlet.	4 lab hours
10	Create a simple java bean having bound and constrained properties.	4 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Mid Term Presentation/		
			Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

	Mapping between COs and POs				
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Learn to the syntax of Java Programming Language and implement applications in it.	PO2			
CO2	Recognize features of object-oriented design such as encapsulation, polymorphism, inheritance and composition of systems based on object identity.	PO3			
СОЗ	Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.	PO5			
CO4	Apply access control mechanism to safeguard the data and functions that can be applied by the object	PO8			
CO5	Understand multithreading and evaluate exception handing to create new applications.	PO1			
CO6	Design GUI applications using pre-built frameworks available in Java.	PO9			

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mpl ex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio r	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	PSO 1	PSO 2	PSO 3
ETCS361 A	Java Programmin g Lab	2	3	3		2			2	3				3		2

2= moderately mapped

3=strongly mapped

ETCS258A	Computer Graphics Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To implement of line drawing, circle drawing, polygon drawing, transformation of objects, scaling, viewing, and curve designing and modeling algorithm practically for graphics.
- 2. To generate alternate solution for an existing problem with computer graphics.
- 3. Understand practical fundamental of line drawing, circle drawing, polygon drawing and curve drawing.

Course Outcomes

On completion of this course, the students will be able to

CO1.Understand the practical implementation of modeling, rendering, viewing of objects in 2D and 3D.

CO2. Get knowledge about clipping algorithms

CO3. Get knowledge about Curves algorithms.

CO4. Implement Isometric Projection

Catalog Description

This course will provide basic concepts of computer graphics including necessary mathematics and algorithms. Primary focus of this course will be to understand the basics of 2D/3D rendering. The course will also cover various aspects of the rendering pipeline and realistic image synthesis using raytracing.

List of Experiments (Indicative)

1	Write a program to draw a point on screen. Study of various built-in commands to draw basic objects on screen.	2 lab hours
2	Write a program to implement Bresenham's Line Drawing Algorithm.	2 lab hours
3	Write a program to implement various 2D, 3D Transformation matrices such as Translation, Scaling, Rotation, and Shear.	2 lab hours
4	Write a program to implement Sutherland-Cohen line Clipping Algorithm.	2 lab hours
5	Write a program to implement Bresenham's Circle Drawing Algorithm.	2 lab hours
6	Write a program to implement Bezier Curves.	2 lab hours
7	Write a program to implement B-Spline Curves.	2 lab hours
8	Write a program to implement various Projections of 2D objects.	2 lab hours
9	Write a program to implement various Projections of 3D objects.	4 lab hours
10	Write a program to implement Isometric Projection.	4 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Understand the practical implementation of modeling, rendering, viewing of objects in 2D and 3D.	PO2							
CO2	Get knowledge about clipping algorithms	PO3							
CO3	Get knowledge about Curves algorithms.	PO5							
CO4	Implement Isometric Projection	PO1							

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co ndu ct inv esti gati ons of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avi or	Kn owl edg e
Course Code	Course Title	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS258A	Computer Graphics Lab	2	3	3		2								3		

¹⁼weakly mapped 2= moderately mapped 3=strongly mapped

ETCS 301A	Programming in MATLAB	L	Т	P	С
Version 1.0		2	-	-	2
Pre-requisites/Exposure	-				
Co-requisites	-				

Course Objectives

- 1. MATLAB is considered as one of the most important tools and modern computer language.
- 2. This course enables the students to learn many of MATLAB commands.
- 3. Also, how to use them in programming to solve many problems in different mathematical subjects specially in numerical analysis and other subjects which connected to computer-oriented mathematics.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.

CO2. Write a MATLAB scripts and create a useful function to be used later in another mathematical subjects.

CO3. Expect the result and the outcome of any command or script.

Catalog Description

Exposing students to many techniques and capabilities in MATLAB will enhance ability to use computing tools and languages to solve engineering problems in academic and professional career.

Course Content

Unit I: 10 lecture hours

Introduction to MATLAB: Brief Introduction, Installation of MATLAB, History, Use of MATLAB, Key features, MATLAB Window, Command Window, Workspace, Command history, Setting directory, Working with the MATLAB user interface, Basic commands, Assigning variables, Operations with variables, Data files and Data types: Character and string, Arrays and vectors, Column vectors, Row vectors, Arithmetic operations, Operators and special characters, Mathematical and logical operators, Solving arithmetic equations.

Unit II: 8 lecture hours

Operations: Crating rows and columns Matrix, Matrix operations: Finding transpose, determinant and inverse, Solving matrix, Trigonometric functions, Complex numbers, fractions, Real numbers, Complex numbers, Working with script tools, Writing Script file, Executing script files, The MATLAB Editor, Saving m files

Plots: Plotting vector and matrix data, Plot labelling, curve labelling and editing, Basic Plotting Functions, Creating a Plot Plotting Multiple Data Sets in One Graph, Specifying Line Styles and Colors, Graphing Imaginary and Complex Data Figure, Windows Displaying, Multiple Plots in One Figure, Controlling the Axes, Creating Mesh and Surface About Mesh and Surface Visualizing Subplots

Unit III: 8 lecture hours

MATLAB Simulink: Introduction of Simulink, Simulink Environment & Interface, Study of Library, Circuit Oriented Design, Equation Oriented Design, Model Subsystem Design, Connect Call back to subsystem, Application. Automating commands with scripts, writing programs with logic and flow control, Control statement, Programming Conditional Statement, Writing functions, Programming, Examples

Unit IV: 6 lecture hours

Symbolic Math in MATLAB: Calculus: Numerical Integration, Linear Algebra, Roots of Polynomials, Algebraic equations, Differential Equations (1st& 2nd order), Transforms (Fourier, Laplace, etc), Ordinary Differential equations, Examples of few ODEs.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Learn a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.	PO2							

CO2	Write a MATLAB scripts and create a useful function to be used later in another mathematical subjects.	PO5
CO3	Expect the result and the outcome of any command or script.	PO5

	Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
	n	r	e	o	О	h	n	t	n	О	r	i	k	e	r	t	n
	g	o	s	n	d	e	v	h	d	m	О	f	i	S	0	h	a
	i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
	n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	у
	e	e	n	c	n	g	О	S	i	n	c	1	S	r	S	S	S
	e	m	/	t	t	i	n		d	i	t	О		a	S		i
	r	a	d	i	О	n	m		u	c	m	n		c	i		S
	i	n	e	n	О	e	e		a	a	a	g		t	О		
	n	a	v	v	1	e	n		1	t	n	L		i	n		
	g K	1	e	e	u	r	t		О	i	a	e		c	R		
	K	У	1	S	S	a	a		r	О	g	a		e	e		
	n	S	О	t	a	n	n		t	n	e	r		S	S		
	О	i	p	i	g	d	d		e		m	n			p		
	V	S	m	g	e	S	S		a		e	i			О		
	1		e	a		0	u		m		n	n			n		
	e		n	t		c	S		W		t	g			S		
	d		t	i		i	t		О		a				i		
	g		0	О		e	a		r		n				b		
	e		f	n		t	i		k		d				i		
			S	S		У	n				f				1		
			0	0			a				i				i		
			1	f			b				n				t		
			u	c			i				a				i		
			t	О			1				n				e		
			i	m			i				c				S		
			0	p			t				e						
			n	1			У										
			S	e													
				X													
				p r													
				r													
				o b													
				1													
				e													
				m													

					S													
Cours e Code	Course Title	P O 1	P O 2	P O 3	PO 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5
ETCS 301A	Progra mming in MATL AB		3			3								3				

2= moderately mapped

3= strongly mapped

ETCS350A	Programming in MATLAB Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	-				
Co-requisites					

Course Objectives

- 1. MATLAB is considered as one of the most important tools and modern computer language.
- 2. This course enables the students to learn many of MATLAB commands.
- 3. Also, how to use them in programming to solve many problems in different mathematical subjects specially in numerical analysis and other subjects which connected to computer-oriented mathematics.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.

CO2. Write a MATLAB scripts and create a useful function to be used later in another mathematical subjects.

CO3.Expect the result and the outcome of any command or script.

Catalog Description

Exposing students to many techniques and capabilities in MATLAB will enhance ability to use computing tools and languages to solve engineering problems in academic and professional career.

List of Experiments (Indicative)

1	To Know the history, features and local environment of MATLAB	2 lab hours
2	Calculate the area enclosed between the x-axis, and the curve $y=x3-2x+5$ and the ordinates $x=1$ and $x=2$.	2 lab hours
3	Find the addition, subtraction and multiplication of 3 * 3 matrix.	2 lab hours
4	Find the transpose of given matrix	2 lab hours
5	Find the inverse of given matrix	2 lab hours
6	Find the rank of matrix	2 lab hours
7	Find the eigen value and eigen vector of matrix	2 lab hours
8	Solve $(D^2 + 5D + 6)y = e^x$	2 lab hours
9	Solve $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$	2 lab hours
10	Plot the surface for 2 + cos t	2 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Learn a great numbers of MATLAB commands and how to use them in programming and in many applications in Mathematics.	PO2								
CO2	Write a MATLAB scripts and create a useful function to be used later in another mathematical subjects.	PO5								
CO3	Expect the result and the outcome of any command or script.	PO5								

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n		e	0	0		n	t	n	0	r	i	k	e	r	t	n
			0	s	n	d		V	h	d	m	0	f	i	s	0	h	a
		g i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	_	1	P	e	c	у
		e	e	n	c	n		0	s	i	n	c	1	s	r	s	s	S
		e	m	/	t	t	i	n		d	i	t	0		a	S		i
		r	a	d	i	О		m		u	c	m	n		c	i		S
		i	n	e	n	О		e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	S	s	a	a		r	О	g	a		e	e		
		n		О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	s		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t .	О			l				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e													
					m													
					S													
Cours	G	D				P												
e	Course	P O	P	P	РО	О	P	P	P	P	РО	РО	РО	PS	PS	PS	PS	PS
Code	Title	1	O2	O3	4	5	O6	O7	O8	O9	10	11	12	01	O2	O3	O4	O5

ETCS in 350A M	Progra mming n MATL AB Lab	3			3								3				
----------------	----------------------------	---	--	--	---	--	--	--	--	--	--	--	---	--	--	--	--

2= moderately mapped

3=strongly mapped

ETCS409A	Advanced Computer Networks	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics of Computer Networks				
Co-requisites					

Course Objectives

- 1. To understand the state of the art in network protocols, network architecture, and networked systems.
- 2. To develop a strong understanding of the core concepts of computer networks
- 3. To gain practice of reading the research papers and critically understanding the research of others
- 4. Describe how computer networks are organized with the concept of layered approach with general principles of data communication
- 5. Describe how signals are used to transfer data between nodes and implement a simple LAN with hubs, bridges and switches.
- 6. To understand how packets in the Internet are delivered.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Independently understand basic computer network technology.
- CO2. Understand and explain Data Communications System and its components.
- CO3. Identify the different types of network topologies and protocols.
- CO4. Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer.
- CO5. Identify the different types of network devices and their functions within a network
- CO6. Understand and building the skills of subnetting and routing mechanisms.
- CO7. Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation.
- CO8. Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking.

Catalog Description

This is a graduate level course on computer networking and assumes a student has a basic understanding of computer networks concepts. This course is a topics based course which primarily covers topics from Internet Architecture, Internet Congestion Control, Software Defined Networking, Delay Tolerant Networks, Wireless Networking, Quality of Service& Traffic Engineering, Network Performance & Management, Overlay Networks and Network Applications . In addition, this course will cover recent proposals to improve network performance, functionality and scalability to meet emergent applications Requirement.

Course Content

Unit I: 12 lecture hours

Internet Design & Architecture: Overview of network building blocks, Network architecture and design principles, layers and protocols: Internet Layering, Functionality Implementation (like Recovery from crashes, security, reliability etc.) at lower layers vs. Higher layers, Internet design: Challenges and Solutions, Case Study of Future Internet Design Project: Named Data Networking(NDN) Traffic Management: Congestion control principles, TCP congestion control, Load Balancing using Multipath TCP, IProuting: Intra-domain (OSPF/RIP) and Inter-domain (BGP), Adaptive Routing, Multipath and QoS Routing, Traffic Engineering Principles; Route Optimization, TE Issues and Challenges: Robustness, TE Interactions, Interoperability, MPLS Routing, Intradomain Routing: Protocols Characteristics and Limitations; Achieving QoS/Traffic Engineering with IP Routing Protocols.

Unit II: 8 lecture hours

Software Defined Networks (SDNs): Software Defined Networking (SDN): Centralized and Distributed Control and Data Planes, SDN Architecture, SDN Controllers, OpenFlow: Protocol to Program the Networks, Network Programmability, Network Function Virtualization, SDN Frameworks, Use cases for traffic monitoring& classification, bandwidth scheduling and monitoring. Delay Tolerant Networks

(DTNs): Delay Tolerant Network Architecture, DTN Routing Protocols: Taxonomy and Design, Replication Based Routing Protocols, Open Issues and Challenges, DTN Application(s): Message Dissemination in Vehicular Networks, Adhoc Network for Disaster Rescue Management, Multimedia Content Delivery Network

Unit III: 12 lecture hours

Overlay Networks Applications: Overlay Networks: Advantages and Challenges, Resilient Overlay Networks(RON), Lookup Problem inP2P Networks, ScalableP2P Lookup Service for Internet Applications, Chord Protocol, DNS and Naming System, DNS and CDN,HTTP and CDN Case Study: Akamai CDN, An overlay approach to decouple sender and receiver to generalize the Multicast, Anycast and Mobility, Mobile P2P Overlay Networks for DTNs: Challenges, Prophet Based Information Retrieval, Ad-hoc Storage Overlay System

Unit IV: 8 lecture hours

Wireless Networks: Wireless Networking: An Overview, TCP Performance Issues in Wireless Links: Problems and Solutions, Network Centered IP Mobility Solutions, Overview of Wireless Sensor Networks.

Text Books

- 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGrawHill.
- 2. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.

Reference Books/Materials

- 1. "Data and Computer Communication" by William Stallings
- 2. "Computer Networks" by Andrew S Tanenbaum
- 3. "Internetworking with TCP/IP, Volume 1" by Douglas Comer

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping bet	ween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Independently understand basic computer network technology.	PO2
CO2	Understand and explain Data Communications System and its components.	PO3
CO3	Identify the different types of network topologies and protocols.	PO4
CO4	Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer.	PO5
CO5	Identify the different types of network devices and their functions within a network	PO4
CO6	Understand and building the skills of subnetting and routing mechanisms.	PO4
CO7	Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation.	PO9
CO8	Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking	PSO1, PSO2, PSO5

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n		e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d		V	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	V	u	e	_	1	P	e	c	y
		e	e	n	c	n		0	s	i	n	c	1	s	r	s	s	S
		e	m	/	t	t	i	n		d	i	t	0		a	S		i
		r	a	d	i	О		m		u	c	m	n		c	i		s
		i	n	e	n	О	e	e		a	a	a	g		t	0		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	S	s	a	a		r	О	g	a		e	e		
		n		О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	s	m	g	e		S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	О			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e m													
					S													
Cours		_				P												
e	Course	P O	РО	P	РО	O	РО	РО	P	РО	РО	РО	РО	PS	PS	PS	PS	PS
Code	Title	1	2	O3	4	5	6	7	O8	9	10	11	12	01	O2	03	O4	O5

ETCS	Advanc ed Compu								3			
409A	ter	2	3	3	3		3			2		3
10212	Networ ks											
	KS											

2= moderately mapped

3=strongly mapped

ETCS452A	Advanced Computer Networks Lab	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Computer Networks				
Co-requisites					

Course Objectives

- 1. To develop an understanding of computer networking basics.
- 2. To develop an understanding of different components of computer networks, various protocols, modern technologies and their applications.
- 3. To recognize the technological trends of Computer Networking.
- 4. To understand the key technological components of the Network
- 5. To understand the state of the art in network protocols, network architecture, and networked systems.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Describe the general principles of data communication and how computer networks are organized with the concept of layered approach.
- CO2. Understand and explain the concept of Data Communication and networks, layered architecture and their applications.
- CO3. Describe how packets in the Internet are delivered and analyze the contents in a given data link layer
- CO4. Evaluate data communication link considering elementary concepts of data link layer protocols for error detection and correction
- CO5 Describe what classless addressing scheme is with how routing protocols work.
- CO6. Estimate the congestion control mechanism to improve quality of service of networking application

Catalog Description

This course will introduce students to the basic design principles on which today's Internet is based upon a long with the current and emerging research topics in computer networking area. In addition, this course will cover recent proposals to improve network performance, functionality and scalability to meet emergent applications requirement. The list of experiments help in understanding different computer network techniques.

List of Experiments (Indicative)

1	Implement the CRC-12, CRC-16 in data link layer	2 lab hours
2	Implement the data link protocols: Unrestricted simplex protocol	2 lab hours
3	Implement of one-bit sliding window protocol.	2 lab hours
4	Implement Dijkstra's algorithm to compute the shortest path thru a graph.	3 lab hours
5	Implement the Token Bucket Congestion control algorithm.	3 lab hours
6	Implement the Leaky Bucket Congestion control algorithm	3 lab hours
7	The Experiments using Mininet for Software Defined Network	4 lab hours

	a. Network Topology creation and REST API introduction.	
	b. Influencing flows via cURL commands.	
	c. Create a network and run a simple performance test.	
	d. Use "ovs-vsctl" command to directly control open v switch.	
	e. Dynamically change the network parameters—link delay analysis.	
	f. Dynamically change the forwarding rules.	
	g. Mininet Random Topology Generator.	
	The experimenets using NS-3	
	a. Create a simple topology of two nodes (Node1, Node2) separated by a point-to-point link. Setup a UdpClient on one Node1 and a Udp Server on Node2. Let it be of a fixed data rate Rate1. Start the client application, and measure end to end throughput whilst varying the latency of the link. Now add	
	another client application to Node1 and a server instance to Node2. What do you need to configure to ensure that there is no conflict? Repeat step 3 with the extra client and server application instances. Show screenshots of pcap traces which indicate that delivery is made to the appropriate server instance.	
8	b. Create a simple dumbbell topology, two client Node1 and Node2 on the left side of the dumbbell and server nodes Node3 and Node4 on the right side of the dumbbell. Let Node5 and Node6 form the bridge of the dumbbell. Use point to point links. Install a TCP socket instance on Node1 that will connect to Node3. Install a UDP socket instance on Node2 that will connect to Node4. Start the TCP application at time 1s. Start the UDP application at time 20s at rate Rate1 such that it clogs half the dumbbell bridge's link capacity. Increase the UDP application's rate at time 30s to rate Rate2 such that it clogs the whole of the dumbbell bridge's capacity. Use the ns-3 tracing mechanism to record changes in congestion window size of the TCP instance over time. Use gnuplot/matplotlib to visualise plots of cwnd vs time. Mark points of fast recovery and slow start in the graphs.	8 lab hours

Perform the above experiment for TCP variants Tahoe, Reno and New Reno, all of which are available with ns-3.

c. Create a wireless mobile ad-hoc network with three nodes Node1, Node2 and Node3. Install the OLSR routing protocol on these nodes. Place them such that Node1 and Node3 are just out of reach of each other. Create a UDP client on Node1 and the corresponding server on Node3. Schedule Node1 to begin sending packets to Node3 at time 1s. Verify whether Node1 is able to send packets to Node3. Make Node2 move between Node1 and Node3 such that Node2 is visible to both A and C. This should happen at time 20s. Ensure that Node2 stays in that position for another 15s. Verify whether Node1 is able to send packets to Node3. At time 35s, move Node2 out of the region between Node1 and Node3 such that it is out of each other's transmission ranges again. Verify whether Node1 is able to send packets to Node3. To verify whether data transmissions occur in the above scenarios, use either the tracing mechanism or a RecvCallback() for Node3's socket. Plot the number of bytes received versus time at Node3. Show the pcap traces at Node 2's Wifi interface, and indicate the correlation between Node2's packet reception timeline and Node2's mobility.

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs

	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Describe the general principles of data communication and how computer networks are organized with the concept of layered approach.	PO1
CO2	Understand and explain the concept of Data Communication and networks, layered architecture and their applications.	PO4
CO3	Describe how packets in the Internet are delivered and analyze the contents in a given data link layer	PO5
CO4	Evaluate data communication link considering elementary concepts of data link layer protocols for error detection and correction	PO2
CO5	Describe what classless addressing scheme is with how routing protocols work.	PO3
CO6	Estimate the congestion control mechanism to improve quality of service of networking application	PO6

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	Α
		n		e	О	О		n	t	n	О	r	i	k	e	r	t	n
		g	О	S	n	d	e	v	h	d	m	О	f	i	S	О	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	у
		e	e	n	c	n	g	О	S	i	n	c	1	S	r	S	S	S
		e	m	/	t	t	i	n		d	i	t	0		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		С	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	V	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K		1	S	S	a	a		r	O	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	О			1				n				e		
				i	m			i				С				S		
				0	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e													
					m													
					S													
Cours	<u> </u>	P	P	P		P	P	P	P	P								
e	Course	0	O	O	РО	O	O	O	O	O	РО	РО	РО	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3	O4	O5

	ADV														
	ANC													2	
	ED										3			3	
ETC	COM														
S452	PUTE	2	2	2	3	3	3					3	3		2
A	R		_				Ü								_
	NET														
	WOR														
	KS														
	LAB														

2= moderately mapped

3=strongly mapped

ETCS410A	Mobile And Wireless Communication	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Advanced of Computer communication				
Co-requisites					

Course Objectives

- 1. Define mobile technologies in terms of hardware, software, and communications.
- 2. Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.
- 3. Evaluate the effectiveness of different mobile computing frameworks.
- 4. Describe how mobile technology functions to enable other computing technologies.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.
- CO2. Evaluate the effectiveness of different mobile computing frameworks.
- CO3. Describe how mobile technology functions to enable other computing technologies.

Catalog Description

This course will cover the nomenclature and implementation of mobile computing and mobile communication. Coverage mobile systems will include 2G, 2.5G, 3G, 3G+, and 4G communication systems, mobile satellite communication networks, mobile IP, mobile TCP, digital audio-video broadcasting, and mobile TV. This course will also provide a systematic explanation of mobile computing as a discrete discipline and will provide an in-depth coverage of mobile systems and devices, mobile operating systems used for application development, mobile databases, client-server computing agents, application servers, security protocols, and mobile Internet, and ad-hoc and sensor networks.

Course Content

Unit I: 12 lecture hours

Introduction to Wireless Communication System: Evolution of mobile communications, Mobile Radio System around the world, Types of Wireless communication System, Comparison of Common wireless system, Trends in Cellular radio and personal communication. Second generation Cellular Networks, Third Generation (3G) Wireless Networks, Wireless Local Loop(WLL), Wireless Local Area network(WLAN), Bluetooth and Personal Area Networks.

Unit II: 8 lecture hours

Cellular system, Hexagonal geometry cell and concept of frequency reuse, Channel Assignment Strategies Distance to frequency reuse ratio, Channel & co-channel interference reduction factor, S/I ratio consideration and calculation for Minimum Co-channel and adjacent interference, Handoff Strategies, Umbrella Cell Concept, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular System-cell splitting, Cell sectorization , Repeaters, Micro cell zone concept, Channel antenna system design considerations.

Unit III: 12 lecture hours

Multiple Access Techniques: Introduction, Comparisons of multiple Access Strategies like TDMA,CDMA, FDMA, OFDM, and CSMA Protocols. Wireless Systems: GSM system architecture, Radio interface, Protocols, Localization and calling, Handover, Authentication and security in GSM, GSM speech coding, Concept of spread spectrum, Architecture of IS-95 CDMA system, Air interface, CDMA forward channels, CDMA reverse channels, Soft handoff, CDMA features, Power control in CDMA, Performance of CDMA System, RAKE Receiver, CDMA2000 cellular technology, GPRS system architecture.

Unit IV: 8 lecture hours

Recent trends: Introduction to Wi-Fi, WiMAX, ZigBee Networks, Software Defined Radio, UWB Radio, Wireless Adhoc Network and Mobile Portability, Security issues and challenges in a Wireless network.

Text Books

1. Wireless Communication, Theodore S. Rappaport, Prentice hall

Reference Books/Materials

1. Wireless Communications and Networking, Vijay Garg, Elsevie

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Utilize mobile computing nomenclature to describe and analyze existing mobile computing frameworks and architectures.	PO1, PO2								
CO2	Evaluate the effectiveness of different mobile computing frameworks.	PO3, PO4								
СОЗ	Describe how mobile technology functions to enable other computing technologies.	PO10, PSO1, PSO2,PSO5								

		En n g i n e e e r i n g K n o w l e d g e	r o b l e m a n a l y s i s	D e s i g n / d e v e l o p m e n t o f s o l u t i o n s	C o n d u c t i n v e s t i g a t i o n s o f c o m p l e x p r o b l	Mood de r n t oo oo l u s a a g e e	h e e n g i n e e r a n d	E n v i r o n m e n t a n d s u s t a i n a b i l i t y	E t h i c s	I n d i v i d u a l o r t e a m w o r k	C o m m u n i c a t i o n	P r o j e c t m a n a g e n t a n d f i n a c e	L i f e - l o n g L e a r n i n g	S k i l l s s	B e s t P r a c t i c e s	P r o f e s s i o n R e s p o n s i t i e s	E t h i c s	A n a l y s i s
Cours e Code	Course Title	P O 1	P O 2	P O 3	r o b	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5

	Mobile												
	and Wirele									2			
ETCS 410A	ss Comm unicati on	2	2	2	2			3			2		2

2= moderately mapped

3=strongly mapped

ETCS453A	Mobile and Wireless Communication Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical of computer communication				
Co-requisites					

Course Objectives

- 1. Use engineering knowledge to solve real world open-ended problems in wireless system design.
- 2. Use appropriate channel and traffic models to evaluate the impact of wireless service quality and capacity.
- 3. Generate solutions for complex design problems via proper choice of system parameters, analyze the results and make recommendations.
- 4. Design and develop software tools to perform the tasks required by the project; Identify the limitations and enhancements of the tools with respect to the project needs.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Learn to the syntax of Java Programming Language and implement applications in it.
- CO2. Recognize features of object-oriented design such as encapsulation, polymorphism inheritance and composition of systems based on object identity.
- CO3. Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.
- CO4. Apply access control mechanism to safeguard the data and functions that can be applied by the object.

CO5. Understand multithreading and evaluate exception handing to create new applications.

CO6. Design GUI applications using pre-built frameworks available in Java.

Catalog Description

This course provides a comprehensive introduction to basic principles and techniques in cellular mobile communications. The topics include: communication overview and frequency reuse, the cellular concept, radio propagation environments, techniques of modulation and equalization, multiple access wireless systems: TDMA/FDMA systems, CDMA systems etc.

List of Experiments (Indicative)

1	To set up a satellite communication link & study of change in uplink & downlink frequency.	2 lab hours
2	To Study Transmission of Audio & Video Signals & Data communication over satellite link.	2 lab hours
3	To Study Transmission of telemetry data like temperature & light intensity over satellite link.	2 lab hours
4	To measure the propagation delay of signal in a Satellite communication link.	2 lab hours
5	To study different GPS data like longitude, latitude & different types of dilute of precision using GPS receiver.	2 lab hours
6	To study selection of various PN codes like Gold, Barker & MLS in CDMA technology.	4 lab hours
7	To study generation (spreading) & demodulation (Despreading) of DSSS modulated signal.	4 lab hours
8	To study Voice communication over DSSS.	4 lab hours
9	To study Minimum shift keying modulation & de modulation.	4 lab hours
10	FHSS Modulation & demodulation & transfer of numeric data.	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Use engineering knowledge to solve real world open-ended problems in wireless system design.	PO1,PO2					
CO2	Use appropriate channel and traffic models to evaluate the impact of wireless service quality and capacity.	PO3					
CO3	Generate solutions for complex design problems via proper choice of system parameters, analyze the results and make recommendations	PO5					
CO4	Design and develop software tools to perform the tasks required by the project; identify the limitations and enhancements of the tools with respect to the project needs.	PO8, PO9, PSO1,PSO5, PSO2					

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n		e	0	0			t	n	0	r	i	k	e	r	t	n
		g		s	n	d	e		h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	_	i	i	m	j	e	1	t	f	i	1
		n		g	u	r	n		c	v	u	e	_	1	P	e	c	у
		e	e	n	ct	n	g		S	i	n	c	1	s	r	s	S	S
		e	m	/	in	t	i	n		d	i	t	О		a	s		i
		r	a	d	V	О	n			u	c	m	n		c	i		s
		i	n	e	e	О				a	a	a	g		t	О		
		n	a	v	st	1	e	n		1	t	n	L		i	n		
		g	1	e	ig	u	r	t		О	i	a	e		c	R		
		K		1	at	s	a	a		r	О	g	a		e	e		
		n		О	io	a	n	n		t	n	e	r		S	S		
		О	i	p	n	g	d	d		e		m	n			p		
		W	s	m	S	e	s	s		a		e	i			O		
		1		e	O		О	u		m		n	n			n		
		e		n	f		c	S		w		t	g			S		
		d		t	c		i	t		О		a				i		
		g		О	O		e	a		r		n				b		
		e		f	m		t	i		k		d				i		
				S	pl		У	n				f				1		
				О	e			a				i				i		
				1	X			b				n				t		
				u	p			i				a				i		
				t	r			1				n				e		
				i	O			i				c				S		
				О	bl			t				e						
				n	e			y										
				S	m													
					S													
Cours	Course	P	P	P		P	P	P	P	P	РО	РО	РО				PS	PS
e	Title	0	О	0	PO4	O	О	О	0	О	10	11	12	PS	PS	PS	O4	O5
Code		1	2	3		5	6	7	8	9				O1	O2	O3		
	Mobile																	
	and																	
	Wirele													2				
ETCS	SS	2	3	3		2			2	3					2			2
453A	Comm		J	3						3								2
	unicati																	
	on Lab																	

2= moderately mapped

3=strongly mapped

ETCS411A	Machine Learning	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure	NIL				
Co-requisites					

Course Objectives

- 1. To develop an appreciation for what is involved in learning from data.
- 2. To understand a wide variety of learning algorithms.
- 3. To understand how to apply a variety of learning algorithms to data.
- 4. To understand how to perform evaluation of learning algorithms and model selection.
- 5. To become familiar with Dimensionality reduction Techniques.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Gain knowledge about basic concepts of Machine Learning
- CO2. Identify machine learning techniques suitable for a given problem.
- CO3. Solve the problems using various machine learning techniques.
- CO4. Apply neural networks for suitable application.
- CO5. Use a tool to implement typical clustering algorithms for different types of applications.
- CO6. Apply Dimensionality reduction techniques.

Catalog Description

This course imparts comprehensive introduction to various topics in machine learning. It enables them to design and implement machine learning solutions to classification, regression, and clustering problems; and be able to evaluate and interpret the results of the algorithms.

UNIT I 8 Hours

Machine learning: overview and survey of its applications. Problem of induction and statistical inference: Input-output functions, Boolean functions, Parametric and nonparametric inference, Probability, uncertainty and Bayes theorem, Introduction to typical learning tasks: regression, pattern recognition, feature selection, classification, clustering, rule induction (association). Model validation techniques: cross-validation, leave-one-out, majority, Measures of performance (sensitivity, specificity, ROC curves, etc.)

UNIT II 8 Hours

Dimensionality Reduction: Subset Selection, Shrinkage Methods, Principle Components Regression Linear Classification, Logistic Regression, Linear Discriminant Analysis Optimization, Classification-Separating Hyperplanes Classification

UNIT III 9 Hours

Neural Networks: Non-linear Hypothesis, Biological Neurons, Model representation, Intuition for Neural Networks, Multiclass classification, Cost Function, Back Propagation Algorithm, Back Propagation Intuition, Weights initialization, Neural Network Training.

Support Vector Machines: Optimization Objective, Large Margin Classifiers, Kernels, SVM practical considerations

UNIT IV 10 Hours

Supervised Learning: Additive model: logistic regression, Generative model: naïve Bayes classifier, Discriminative model: Decision trees, Neural networks.

Unsupervised Learning: Clustering: k-means, hierarchical, self-organizing map, EM algorithm, Feature selection principal component analysis.

Reinforcement Learning: Q-learning, Value function approximation, Policy search.

Text Books:

1. The Elements of Statistical Learning, T. Hastie, R. Tibshirani and J. H. Friedman, Springer.

Reference Books:

- 1. Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media
- 2. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st Edition, O'Reilly Media

- 3. Jain V.K., "Data Sciences", Khanna Publishing House, Delhi.
- 4. Jain V.K., "Big Data and Hadoop", Khanna Publishing House, Delhi.
- 5. Jeeva Jose, "Machine Learning", Khanna Publishing House, Delhi.
- 6. Chopra Rajiv, "Machine Learning", Khanna Publishing House, Delhi.
- 7. Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press
- 8. http://www.deeplearningbook.org
- 9. Jiawei Han and Jian Pei, "Data Mining Concepts and Techniques", Third Edition, Morgan Kaufmann Publisher

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Gain knowledge about basic concepts of Machine Learning	PO1
CO2	Identify machine learning techniques suitable for a given problem.	PO4
CO3	Solve the problems using various machine learning techniques.	PO5
CO4	Apply neural networks for suitable application.	PO2
CO5	Use a tool to implement typical clustering algorithms for different types of applications.	PO3
CO6	Apply Dimensionality reduction techniques.	PO3

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n		e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g		S	n	d		v	h	d	m	О	f	i	s	О	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r		r	c	v	u	e	_	1	P	e	С	у
		e	e	n	c	n	g	О	S	i	n	c	1	s	r	S	s	S
		e	m	/	t	t		n		d	i	t	О		a	S		i
		r	a	d	i	o	n	m		u	c	m	n		c	i		S
		i	n	e	n	o	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K		1	S	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		С	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		0	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t ·	0			1				n				e		
				i	m			i				С				S		
				0	p			t				e						
				n	1			У										
				S	e													
					X													
					p r													
					0													
					b													
					1													
					e													
					m													
					s													
Cours	C	P	P	P	_	P	Р	P	P	P								
e	Course	0	0	0	РО	О	0	0	0	0	PO	PO	PO	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3	O4	O5

ETCS	Machi ne	2	3	3	3	3				2	2		2
411A	Learni	_)	3	3					2	2		2
	ng												

2= moderately mapped

3=strongly mapped

ETCS455A	Machine Learning Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Programming for Problem Solving Lab				
Co-requisites					

Course Objectives

- 1. Develop the technical and practical skills to apply machine learning to solve real-world problems.
- 2. Explore regression as a supervised machine learning technique to predict a continuous variable (response or target) from a set of other variables (features or predictors)
- 3. Discover how variable selection and shrinkage methods are used to improve the efficiency of a regression model when applied to complex data sets
- 4. Explore classification as a supervised machine learning technique to predict binary (or discrete) response variables from a set of features
- 5. Understand what neural networks are, its most successful applications, and how it can be used within a business context

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the implementation procedures for the machine learning algorithms .
- CO2. Design Java/Python programs for various Learning algorithms.
- CO3. Apply appropriate data sets to the Machine Learning algorithms.
- CO4. Identify and apply Machine Learning algorithms to solve real world problems.

Note: The programs can be implemented in either JAVA or Python.

1.For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python.

2.Datasetscan be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

Catalog Description

Machine Learning is concerned with computer programs that automatically improve their performance through experience. This course covers the theory and practical algorithms for machine learning from a variety of perspectives. We cover topics such as FIND-S, Candidate Elimination Algorithm, Decision tree (ID3 Algorithm), Backpropagation Algorithm, Naïve Bayesian classifier, Bayesian Network, k-Means Algorithm, k-Nearest Neighbor Algorithm, Locally Weighted Regression Algorithm.

List of Experiments (Indicative)

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. 4 lab hours			
samples. Read the training data from a .CSV file. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	1		2 lab bayya
For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	1		2 lab nours
to output a description of the set of all hypotheses consistent with the training examples. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
to output a description of the set of all hypotheses consistent with the training examples. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	_	implement and demonstrate the Candidate-Elimination algorithm	2 lab b
Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	2	to output a description of the set of all hypotheses consistent	2 lab nours
based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.		with the training examples.	
decision tree and apply this knowledge to classify a new sample. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	3		2 lab hours
4 Backpropagation algorithm and test the same using appropriate data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
data sets. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.		, ,	
Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	4		2 lab hours
sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	_		
Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	5		2 lab hours
naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
accuracy, precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	6		4 lab hours
Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.		v i	
heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.			
use Java/Python ML library classes/API. Apply EM algorithm to cluster a set of data stored in a .CSV file.	7		4 lab hours
Apply EM algorithm to cluster a set of data stored in a .CSV file.			
		1	
	8		4 lab hours
		6 44 6 44 4 4 4	

	Compare the results of these two algorithms and comment on the	
	quality of clustering. You can add Java/Python ML library	
	classes/API in the program.	
	Write a program to implement k-Nearest Neighbour algorithm	
9	to classify the iris data set. Print both correct and wrong	4 lab hours
9	predictions. Java/Python ML library classes can be used for this	4 lab liburs
	problem.	
	Implement the non-parametric Locally Weighted Regression	
10	algorithm in order to fit data points. Select appropriate data set	4 lab hours
	for your experiment and draw graphs.	

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the implementation procedures for the machine learning algorithms.	PO2
CO2	Design Java/Python programs for various Learning algorithms.	РО3
CO3	Apply appropriate data sets to the Machine Learning algorithms.	PO5
CO4	Identify and apply Machine Learning algorithms to solve real world problems.	PO8

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	Α
		n		e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g		s	n	d		V	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n		g	u	r		r	c	v	u	e	_	1	P	e	c	у
		e	e	n	c	n		0	s	i	n	c	1	s	r	S	S	S
		e	m	/	t	t	i	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		С	i		s
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	у	1	s	S	a	a		r	О	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e		S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		w		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t .	0			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e m													
					S													
Cours		_	_	_	٥	P	_	_	_	_								
e	Course	P O	P O	P O	РО	P O	P O	P O	P O	P O	РО	РО	РО	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	O4	O5

ETCS 455A	Machi ne Learni	3	3	2		2			2	2		2
	ng Lab											

2= moderately mapped

3=strongly mapped

ETCS517A	Soft Computing	L	T	P	С			
Version 1.0		3	0	0	3			
Pre-requisites/Exposure	Basics of fuzzy logic, neural network theory, and Genetic							
	algorithms							
Co-requisites								

Course Objectives

The students will be able to get an idea on:

- 1. Neural Networks, architecture, functions and various algorithms involved.
- 2. Fuzzy Logic, Various fuzzy systems and their functions.
- 3. Genetic algorithms, its applications and advances.
- 4. The unified and exact mathematical basis as well as the general principles of various soft computing techniques.

Course Outcomes

Upon completion of the course the students will be able to:

- CO1. Understand soft computing techniques and their role in problem solving.
- CO2. Conceptualize and parameterize various problems to be solved through basic soft computing techniques.
- CO3. Analyze and integrate various soft computing techniques in order to solve problems effectively and efficiently.
- CO4. Develop application on different soft computing techniques like Fuzzy, GA and Neural network
- CO5.Implement Neuro-Fuzzy and Neuro-Fuzz-GA expert system.
- CO6. To understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations.

Catalog Description

This course introduces soft computing methods which, unlike hard computing, are tolerant of imprecision, uncertainty and partial truth. The principal constituents of soft computing are fuzzy logic, neural network theory, and probabilistic reasoning.

Course Content

Unit I: 8 lecture hours

Introduction: What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, Applications of Soft Computing.

Neural Networks: What is Neural Network, Learning rules and various activation functions, Single layer Perceptrons, Back Propagation networks, Architecture of Backpropagation (BP) Networks, Backpropagation Learning, Variation of Standard Back propagation Neural Network, Introduction to Associative Memory, Adaptive Resonance theory and Self Organizing Map, Recent Applications.

Unit II: 12 lecture hours

Fuzzy Systems: Fuzzy Set theory, Fuzzy versus Crisp set, Fuzzy Relation, Fuzzification, Minmax Composition, Defuzzification Method, Fuzzy Logic, Fuzzy Rule based systems, Predicate logic, Fuzzy Decision Making, Fuzzy Control Systems, Fuzzy Classification

Fuzzy Backpropagation Networks: LR type Fuzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning in Fuzzy BP, Application of Fuzzy BP Networks.

Unit III: 12 lecture hours

Genetic Algorithm: History of Genetic Algorithms (GA), Working Principle, Various Encoding methods, Fitness function, GA Operators-Reproduction, Crossover, Mutation, Convergence of GA, Bit wise operation in GA, Multi-level Optimization.GA based Backpropagation Networks: GA based Weight Determination, K -factor determination in Columns.

Unit IV: 8 lecture hours

Hybrid Systems: Sequential Hybrid Systems, Auxiliary Hybrid Systems, Embedded Hybrid Systems, Neuro-Fuzzy Hybrid Systems, Neuro-Genetic Hybrid Systems, Fuzzy-Genetic Hybrid Systems.

Text Books

1. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, S.Rajasekaran, G. A. Vijayalakshami, PHI.

Reference Books/Materials

- 1. Genetic Algorithms: Search and Optimization, E. Goldberg
- 2. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 3. Build_Neural_Network_With_MS_Excel_sampleby Joe choong
- 4. S. N. Sivanandam& S.N. Deepa, "Principles of Soft Computing", Wiley, 2007
- 5. Rafik Aziz oglyAliev, R. R. Aliev: "Soft Computing and Its Applications", World Scientific, 2001

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand soft computing techniques and their role in problem solving.	PO1
CO2	Conceptualize and parameterize various problems to be solved through basic soft computing techniques.	PO3
СО3	Analyze and integrate various soft computing techniques in order to solve problems effectively and efficiently.	PO5
CO4	Develop application on different soft computing techniques like Fuzzy, GA and Neural network	PO2, PSO2, PSO1
CO5	Implement Neuro-Fuzzy and Neuro-Fuzz-GA expert system.	PO4
CO6	To understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations	PO6

		E n g i n e e r i	r o b	D e s i g n / d e	C o n d u c t i n	M o d e r n t o o	h e e n g i	E n v i r o n m	E t h i c s	I n d i v i d u a	C o m m u n i c a	P r o j e c t m	L i f e - l o n g	S k i 1 1 s	B e s t P r a c t	P r o f e s s i o	E t h i c s	A n a l y s i s
		n g K n o w	1 y s i	v e 1 o p m e	v e s t i g a	l u s a g e	r a n d	n t a n d s		1	t i o n	n a g e m e n	L e a r n i n		i c e s	n R e s p o n		
		e d g e		n t o f s o	t i o n s o f		c i e t y	s t a i n a b		w o r k		t a n d f i	g			s i b i 1		
				1 u t i o n	c o m p 1			b i 1 i t y				n a n c e				t i e s		
				5	x p r o b l e m													
Cours e Code	Course Title	P O 1	P O 2	P O 3	PO 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5

ETCS 517A	Soft Compu ting	2	2	2	3	3	2							2	2			
--------------	-----------------------	---	---	---	---	---	---	--	--	--	--	--	--	---	---	--	--	--

2= moderately mapped

3=strongly mapped

ETCS559A	Soft Computing Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical learning of Soft Computing				
Co-requisites					

Course Objectives

The students will be able to get an idea on:

- 1. Neural Networks, architecture, functions and various algorithms involved.
- 2. Fuzzy Logic, Various fuzzy systems and their functions.
- 3. Genetic algorithms, its applications and advances.
- 4. The unified and exact mathematical basis as well as the general principles of various soft computing techniques.

Course Outcomes

Upon completion of the course the students will be able to:

- CO1. Understand soft computing techniques and their role in problem solving.
- CO2. Conceptualize and parameterize various problems to be solved through basic soft computing techniques.
- CO3. Analyze and integrate various soft computing techniques in order to solve problems effectively and efficiently.
- CO4. Develop application on different soft computing techniques like Fuzzy, GA and Neural network

Catalog Description

This course introduces soft computing methods which, unlike hard computing, are tolerant of imprecision, uncertainty and partial truth. The principal constituents of soft computing are fuzzy logic, neural network theory, and probabilistic reasoning.

List of Experiments (Indicative)

1	Create a perceptron with appropriate no. of inputs and outputs. Train using fixed increment learning algorithm until no change in weights is required. Output the final weights.	2 lab hours
2	Create a simple ADALINE network with appropriate no. of input and output nodes. Train using delta learning rule until no change in weights is required. Output the final weights.	2 lab hours
3	Train the autocorrelator by given patterns: A1= $(-1,1,-1,1)$, A2= $(1,1,1,-1)$, A3= $(-1,-1,-1,1)$. Test it using patterns: Ax = $(-1,1,-1,1)$, Ay= $(1,1,1,1)$, Az= $(-1,-1,-1,-1)$.	2 lab hours
4	Train the hetro-correlator using multiple training encoding strategy for given patterns: A1= (000111001) B1= (010000111), A2= (111001110) B2= (100000001), A3= (110110101) B3(101001010). Test it using pattern A2.	2 lab hours
5	Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.	2 lab hours
6	Solve Greg Viot's fuzzy cruise controller using MATLAB Fuzzy logic toolbox.	4 lab hours
7	Solve Air Conditioner Controller using MATLAB Fuzzy logic toolbox.	4 lab hours
8	Implement TSP using GA.	4 lab hours
9	Implement one applications for Adaptive Systems	4 lab hours

10	Implement fitness function, Cross over and mutation in GA algorithms.	4 lab hours
11	Implement genetic algorithm based back propagation network in MATLAB.	

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand soft computing techniques and their role in problem solving.	PO2
CO2	Conceptualize and parameterize various problems to be solved through basic soft computing techniques.	PO3
СОЗ	Analyze and integrate various soft computing techniques in order to solve problems effectively and efficiently.	PO5, PSO1, PO9
CO4	Develop application on different soft computing techniques like Fuzzy, GA and Neural network	PO4

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n		e	0	0		n	t	n	0	r	i	k	e	r	t	n
				s	n	d		V	h	d	m	0	f	i	s	0	h	a
		g i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	- 1	g	u	r	n	r	c	V	u	e	-	1	P	e	c	y
		e	e	n	c	n		0	s	i	n	c	1	s	r	s	s	S
		e	m	/	t	t	i	n		d	i	t	0		a	s		i
		r	a	d	i	0		m		u	c	m	n		c	i		s
		i	n	e	n	o		e		a	a	a	g		t	О		
		n		v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K		1	s	s	a	a		r	О	g	a		e	e		
		n		О	t	a	n	n		t	n	e	r		S	S		
		o	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			s		
		d		t	i		i	t		О		a				i		
		g		О	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				О	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t	0			1				n				e		
				i	m			i				С				S		
				О	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e													
					m													
					S													
Cours		Ъ	D	D	,	P	D	D	D	D								
e	Course	P O	P O	P O	РО	О	P O	P O	P O	P O	РО	PO	РО	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3	O4	O5

ETCS 559A	Soft Compu ting	2	3	3	3		3		2		
	Lab										

2= moderately mapped

3=strongly mapped

ETCS519A	Big Data Analytics and Visualization	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Data Structures and Algorithms				
Co-requisites	Database Management Systems				

Course Objectives

1. Help in understanding the information "hidden" within the voluminous data to make future business decisions.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Ability to identify the characteristics of datasets and compare the trivial data and big data for various applications.
- C02. Ability to select and implement machine learning techniques and computing environment that are suitable for the applications under consideration.
- CO3. Ability to solve problems associated with batch learning and online learning, and the big data characteristics such as high dimensionality, dynamically growing data and in particular scalability issues.
- CO4. Ability to understand and apply scaling up machine learning techniques and associated computing techniques and technologies.
- CO5. Ability to recognize and implement various ways of selecting suitable model parameters for different machine learning techniques.
- CO6. Ability to integrate machine learning libraries and mathematical and statistical tools

Catalog Description

Through this subject, student will be able to understand the coarse-grained aspects of analyzing and extracting relevant information from the vast repository. Student will implement the concepts of data structures and algorithms and database management systems to make highly precise decision from the given data set. The internals of smart analysis will be discussed throughout the course duration.

Course Content

Unit I: 8 lecture hours

Introduction to Big Data: Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.

Overview of Hadoop: Core Hadoop Components, Hadoop Ecosystem, Physical Architecture, Hadoop limitations

Unit II: 12 lecture hours

NoSQL: NoSQL business drivers; NoSQL case studies; NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns; Using NoSQL to manage big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer

Unit III: 12 lecture hours

MapReduce and the New Software Stack: Distributed File Systems -- Physical Organization of Compute Nodes, Large Scale File-System Organization, The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping with Node Failures.

Unit IV: 8 lecture hours

Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step

Text Books

- 1. Data Analytics Made Accessible, A.Maheshwari.
- 2. Hadoop The definite Guide. 3rd edition

Reference Books/Materials

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Ability to identify the characteristics of datasets and compare the trivial data and big data for various applications	PO2,PO12
CO2	Ability to select and implement machine learning techniques and computing environment that are suitable for the applications under consideration	РО3
CO3	Ability to solve problems associated with batch learning and online learning, and the big data characteristics such as high dimensionality, dynamically growing data and in particular scalability issues.	PO5
CO4	Ability to understand and apply scaling up machine learning techniques and associated computing techniques and technologies.	PO3, PO4, PO5
CO5	Ability to recognize and implement various ways of selecting suitable model parameters for different machine learning techniques	PO3, PO5
CO6	Ability to integrate machine learning libraries and mathematical and statistical tools	PO2, PO5, PO12

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0	h	n	t	n	0	r	i	k	e	r	t	n
		g	0	s	n	d	e	V	h	d	m	0	f	i	s	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	_	1	P	e	С	y
		e	e	n	c	n	g	0	S	i	n	c	1	S	r	s	S	s
		e	m	/	t	t	i	n		d	i	t	О		a	s		i
		r	a	d	i	О	n	m		u	c	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	a		
		K	У	1	S	S	a	a		r	О	g	a		e	1		
		n	S	О	t	a	n	n		t	n	e	r		S	R		
		О	i	p	i	g	d	d		e		m	n			e		
		W	S	m	g	e	S	S		a		e	i			S		
		1		e	a		0	u		m		n	n			p		
		e		n	t		c	S		W		t	g			О		
		d		t	i		i	t		О		a				n		
		g		0	О		e	a		r		n				S		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				b		
				0	0			a				i				i		
				1	f			b :				n				1:		
				u	c			i 1				a				i		
				t i	0 m			l i				n				t i		
				0	m			t				c e				e		
				n	р 1			у								s		
				s	e			y								3		
				Б	X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					s													
Course	Course	P	P	P	P	P	P	P	P	P	РО	РО	РО					
Code	Title	0	0	0	0	0	0	0	0	0	10	11	12	PS	PS	PS	PS	PS
		1	2	3	4	5	6	7	8	9				O1	O2	О3	O4	O5

Visualiz ation	ETCS 519A		3	3	2	3							3	2				3
----------------	--------------	--	---	---	---	---	--	--	--	--	--	--	---	---	--	--	--	---

2= moderately mapped

3=strongly mapped

ETCS563A	Big Data Analytics and Visualization Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Data Structures and Algorithms;				
Co-requisites	Database Management Systems				

Course Objectives

Understanding of processing of huge data set over clustered system.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Identify Big Data and its Business Implications.
- CO2. List the components of Hadoop and Hadoop Eco-System.
- CO3. Access and Process Data on Distributed File System.
- CO4. Manage Job Execution in Hadoop Environment.
- CO5. Develop Big Data Solutions using Hadoop Eco System.

Catalog Description

This course complements ETCS518A. It enables them to keenly analyze to reach a point of solving problems with the help of fundamentals. The list of experiments help organizing the flow of understanding and learning to solve the given problem efficiently.

List of Experiments (Indicative)

1	Set up a pseudo-distributed, single-node Hadoop cluster backed by the Hadoop Distributed File System, running on Ubuntu Linux. After successful installation on one node, configuration of a multi-node Hadoop cluster (one master and multiple slaves).	2 lab hours
2	MapReduce application for word counting on Hadoop cluster	2 lab hours
3	Unstructured data into NoSQL data and do all operations such as NoSQL query with API.	2 lab hours
4	K-means clustering using map reduce	2 lab hours
5	Page Rank Computation	2 lab hours
6	Mahout machine learning library to facilitate the knowledge build up in big data analysis.	4 lab hours
7	Application of Recommendation Systems using Hadoop/mahout libraries	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Identify Big Data and its Business Implications.	PO7

CO2	List the components of Hadoop and Hadoop Eco-System.	PO1, PO3
СОЗ	Access and Process Data on Distributed File System.	PO1, PO2
CO4	Manage Job Execution in Hadoop Environment.	PO5
CO5	Develop Big Data Solutions using Hadoop Eco System.	PO2, PO3, PO12

		Е	P	D	С	M	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0	h	n	t	n	0	r	if	ki	e	r	th	n
			0	s	n	d	e	V	h	d	m	0	e-	11	st	0	ic	al
		g i	b	i	d	e	e	i	i	i	m	je	lo	S	P	fe	s	
			1					r		V	u	ct		3		SS	3	y si
		n		g	u	r	n a		c	i	ni		n		ra	io		
		e	e	n /	C +	n t	g i	0	S	d		m	g L		ct ic			S
		e	m	d	t i	t		n			c	a				n al		
		r i	a			0	n	m		u	at io	n	e		e	R		
			n	e	n	0	e	e		a 1		a	ar ni		S			
		n ~	a 1	V	V	1	e	n		1	n	g				e		
		g K		e	e	u	r	t		0		e	n			S		
			У	1	S	S	a	a		r		m	g			p		
		n	S	0	t :	a	n	n		t		e				0		
		0	i	p	i	g	d	d		e		n				n		
		W	S	m	g	e	S	S		a		t				si L:		
		1		e	a		0	u		m		a				bi 1:		
		e		n	t :		c :	S		W		n				li 4:		
		d		t	i		i	t		0		d c:				ti		
		g		0	0		e	a .		r		fi				e		
		e		f	n		t	1		k		n				S		
				S	S		У	n				a						
				0	0			a				n						
				1	f			b				c						
				u	С			i				e						
				t .	О			1										
				i	m			i										
				О	p			t										
				n	1			У										
				S	e													
					X													
					p													
					r													
					0													
					b													
					1													
					e													
					m													
					S													
Cours		DO.	DO.	DO.	DO.	РО	DO.	DO.	DO.	DO.	DO1	DO1	DO1					
e	Course Title	PO 1	PO 2	PO 3	PO 4	5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO	PSO	PSO
Code		1			-			,				1		1	2	3	4	5

	Big Data											
ETCS	Analytics								2	2		2
	and	2	3	3	2	2			2	2		3
563A	Visualizatio											
	n Lab											

2= moderately mapped

3=strongly mapped

ETCS515A	Ethical Hacking	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics Algebra				
Co-requisites					

Course Objectives

- 1. To learn penetration testing.
- 2. To learn difference between threat, vulnerability and attacks.
- 3. To learn security mechanisms.
- 4. To learn different types of attacks.
- 5. To implement tools and methods to improve the security of the system from hackers.
- 6. To differentiate between authorised and unauthorised users.
- 7. To understand latest mechanism of secure and safe network.

Course Outcomes

On completion of this course, the students will be able to

- CO1. To learn ethical considerations of hacking
- CO2. To learn legal considerations of hacking
- CO3. To collect information using network scanning
- CO4. Identify methods to gain access to systems

CO5. Analyze social engineering methods

CO6. Explain common physical security weaknesses

Catalog Description

This class will immerse the students into an interactive environment where they will be shown how to scan, test, hack and secure their own systems. The lab intensive environment gives each student in-depth knowledge and practical experience with the current essential security systems. Students will begin by understanding how perimeter defenses work and then be led into scanning and attacking their own networks

Course Content

Unit I: 12 lecture hours

Introduction to Ethical Hacking: Five phases of ethical hacking, different types of hacker attacks, Foot printing and Reconnaissance, Scanning Networks, TCP flag types, types of port scans, scanning countermeasures

Unit II: 8 lecture hours

Enumeration: Role and enumeration techniques recognize how to establish a sessions, Identify enumeration countermeasures, Perform active and passive enumeration. Sniffers, types of sniffing and protocols vulnerable to sniffing, Recognize types of sniffing attacks, methods for detecting sniffing, different types of social engineering, and social engineering countermeasures.

Unit III: 12 lecture hours

System Hacking: Identify different types of password attacks, Use a password cracking tool, Identify various password cracking countermeasures, Identify different ways to hide files, Recognize how to detect a rootkit, Identify tools that can be used to cover attacker tracks.

Unit IV: 8 lecture hours

Trojans and Backdoors: Concept of Trojan infects a system, ports used by Trojans and Trojan countermeasures, symptoms of a virus and its working, Detection methods and virus countermeasures.

Text Books: 1. A Beginners Guide To Hacking Computer Systems

Reference Books:

1. Black Book of Viruses and Hacking 2. Secrets of Super and Professional Hackers 3. Dangerous Google Hacking Database and Attacks 4. Internet Advanced Denial of Service (DDOS) Attack 5. Computer Hacking & Malware Attacks for Dummies

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping bet	ween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	To learn ethical consideration of hacking	PO2
CO2	To learn legal consideration of hacking	PO3
СОЗ	To collect information using network scanning	PO4
CO4	Identify methods to gain access to systems	PO5
CO5	Analyze social engineering methods	PO4
CO6	Explain common physical security weaknesses	PO4, PO9, PSO1, PSO2, PSO3, PSO4

		En n g i n e e r i n g K n o w l e d g e	r o b l e m a n a l y s i s	Design/developmentofsolutions	C o n d u c t i n v e s t i g a t i o n s o f c o m p l e x p r o b l e m	Modde ern too oo luus aa gee	h e e e n g i n e e e r a n d	E n v i r o n m e n t a n d s u s t a i n a b i l i t y	E t h i c s	Individualorteamwork	C o m m u n i c a t i o n	P r o j e c t m a n a g e m e n t a n d f i n a n c e	L i f e - l o n g L e a r n i n g	S k i l l s s	B e s t P r a c t i c e s	Proofees sion Responsible it is essential.	E t h i c s	A n a l y s i s
Cours e Code	Course Title	P O 1	P O 2	P O 3		P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5

ETCS 515A	Ethical hackin g		2	3	3	3				3				3	1`	2	3	
--------------	------------------------	--	---	---	---	---	--	--	--	---	--	--	--	---	----	---	---	--

2= moderately mapped

3=strongly mapped

ETCS557A	Ethical Hacking Lab	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basic algebra				
Co-requisites					

Course Objectives

- 1. To understand the various security issues.
- 2. To learn different tools and techniques in ethical hacking.
- 3. To implement security tools.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Identify and analyse the stages an ethical hacker requires to take in order to compromise a target system.
- CO2. Identify tools and techniques to carry out a penetration testing.
- CO3. Critically evaluate security techniques used to protect system and user data.
- CO4. Demonstrate systematic understanding of the concepts of security at the level of policy and strategy in a computer system.

Catalog Description

This course is hands-on application of security tools to test network and systems security. The course focuses on hacking techniques and technology from an offensive perspective. The student will learn to scan, test, hack and secure systems. Students will learn the five phases of ethical hacking: reconnaissance; gaining access; enumeration; maintaining access; and covering their tracks. Throughout the course, students will be immersed in a hacker's mindset, evaluating not just logical, but physical security exploring every possible point of entry to find the weakest link in an organization.

Course Content

1	Implementation on various phases of Ethical hacking.	2 lab hours
2	Implementation on networking concept.	2 lab hours
3	Implementation on Foot Printing	2 lab hours
4	Case Study on Windows linux system security.	2 lab hours
5	Implementation on Proxy server	2 lab hours
6	Implementation on System hacking and security.	2 lab hours
7	Implementation on Windows Linux scripting.	2 lab hours
8	Implementation on Network hacking and security.	2 lab hours
9	Implementation on Foot Printing and Information gathering.	2 lab hours
10	Case study on Google hacking.	2 lab hours
11	Case study on Hacking attacks	2 lab hours
12	Case study on Web application hacking.	2 lab hours

13	Case study on Cryptography	2 lab hours
14	Case study on Honeypots	2 lab hours
15	Implementation on Wireless and mobile hacking and security.	2 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs										
	Course Outcomes (COs)										
CO1	Identify and analyze the stages an ethical hacker requires to take in order to compromise a target system.	PO2									
CO2	Identify tools and techniques to carry out a penetration testing.	PO3									
CO3	Critically evaluate security techniques used to protect system and user data.	PO5, PSO1, PSO2, PSO3, PSO4									
CO4	Demonstrate systematic understanding of the concepts of security at the level of policy and strategy in a computer system.	PO9									

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	О	S	n	d		v	h	d	m	О	f	i	S	О	h	a
		i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	С	у
		e	e	n	c	n	g	О	S	i	n	С	1	s	r	S	s	S
		e	m	/	t	t	i	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		С	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	v	v	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	R		
		K	У	1	S	S	a	a		r	О	g	a		e	e		
		n		О	t	a		n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		0	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t i		
				u	c			i 1				a						
				t i	0 m			l i				n				e		
					m							c e				S		
				o n	р 1			t										
				S	e			У										
					x													
					p													
					r													
					0													
					b													
					1													
					e													
					m													
					S													
Cours	Course	P	P	P	DC	P	P	P	P	P	DC	DC	DC.				DC	DC
e	Title	О	O	О	PO 4	O	О	О	О	О	PO 10	PO 11	PO 12	PS	PS	PS	PS O4	PS O5
Code	•	1	2	3	Ċ	5	6	7	8	9	10	1.1		O1	O2	О3		

ETCS 557A	Ethical hackin g Lab		2	3		3				3				3	1`	2	3	
--------------	----------------------------	--	---	---	--	---	--	--	--	---	--	--	--	---	----	---	---	--

2= moderately mapped

3=strongly mapped

Semester VI

ETCA324A	.Net Framework	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Knowledge of C and C++				
Co-requisites					

Course Objectives

- 1. To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.
- 2. To provide a code-execution environment that minimizes software deployment and versioning conflicts.
- 3. To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.
- 4. To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.
- 5. To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

Course Outcomes

On completion of this course, the students will be able to

CO1. Introduction to the .NET framework.

- CO2. Students will describe the basic structure of a Visual Basic.NET project and use main features of the integrated development environment (IDE)
- CO3. Learn about ASP. NET controls and create applications using Microsoft Windows Forms
- CO4. Students will create applications that use ADO. NET
- CO5. To understand and be able to explain Security in the .NET framework and Deployment in the .NET.

Catalog Description

In this course we will learn the fundamentals of the .Net framework, gaining a deeper understanding of web application standards, tools and techniques.

Course Content

Unit I: 10 lecture hours

Introduction to .NET technologies: Features of .NET, .NET Framework, CLR, MSIL, .NET class library, .NET Languages, CTS, assemblies, manifest, and metadata, what is ASP.NET? Difference between ASP and ASP.NET.

Unit II: 10 lecture hours

Controls in ASP.NET: Overview of Dynamic Web page, Understanding ASP.NET Controls, Applications, Web servers, Installation of IIS. Web forms, web form controls -server controls, client controls. Adding controls to a web form, Buttons, Text Box, Labels, Checkbox, Radio Buttons, List Box. Adding controls at runtime. Running a web Application, creating a multiform web project. Form Validation: Client-side validation, server-Side validation, validation Controls: Required Field Comparison Range. Calendar control, Ad rotator Control, Internet Explorer Control.

Unit III: 10 lecture hours

Overview of ADO.NET and XML: What is ADO.NET, from ADO to ADO. NET. ADO.NET architecture, Accessing Data using Data Adapters and Datasets, using Command & Data Reader, binding data to data bind Controls, displaying data in data grid, XML basics, attributes, fundamental XML classes: Document, text writer, text reader. XML validations, XML in ADO.NET, XML Data Document.

Unit IV: 10 lecture hours

ASP.NET Applications: Creating, tracking, caching, error handling, Securing ASP.NET applications -

form based applications, window-based application, State management- View state, Session state, Application state, Building ASP.NET web services, working with ASP.NET applications, creating custom controls.

Text Books

1. Stephen Walther, "ASP.NET Unleashed", SAMS publications

Reference Books/Materials

- 1.ASP.NET, WroxPublications
- 2. ASP.NET and VB.NET, Wrox Publication
- 3. ASP.NET and C#.NET, Wrox Publication.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term		
			Exam	Assignment/ etc.	Exam		
Weightage (%)	10	10	20	10	50		

Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes			
CO1	Introduction to the .NET framework.	PO1, PO2			
CO2	Students will describe the basic structure of a Visual Basic/C#.NET project and use main features of the integrated development environment (IDE)	PO3			
CO3	Learn about ASP. NET controls and create applications using Microsoft Windows Forms	PO5			
CO4	Students will create applications that use ADO. NET	PO5			

CO5	To understand and be able to explain Security in the .NET framework and Deployment in the .NET	PO4	
-----	--	-----	--

		En	Pro	Desi	Cond	M	T	Envir	Е	Ind	Com	Proj	Life	Em	Ethi	Kno
		gin	ble	gn/d	uct	О	he	onme	t	ivi	mun	ect	-	ploy	cs	wle
		eeri	m	evel	inves	d	en	nt	h	dua	icati	man	long	abili	and	dge
		ng	ana	opm	tigati	er	gi	and	i	l or	on	age	Lear	ty	Beh	
		Kn	lysi	ent	ons	n	ne	sustai	c	tea		men	ning		avio	
		owl	S	of	of	to	er	nabili	S	m		t			r	
		edg		solu	comp	ol	an	ty		wo		and			-	
		e		tion	lex	us	d			rk		fina				
				S	probl	a	SO					nce				
					ems	g	ci									
						e	et									
							У									
Cours	Course	PO1	PO2	PO3	PO4	P O	P	PO7	P O	PO9	PO10	PO11	PO12			
e	Title	POI	POZ	PO3	PO4	5	O6	PO/	8	PO9	POIU	POII	PO12	PSO1	PSO2	PSO3
Code									Ŭ							
ETC	.Net															
A324	Framew	2	2	3	2	3								3		2
A	ork															

2= moderately mapped

3=strongly mapped

ETC520A	Internet Technologies	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Internet				
Co-requisites					

Course Objectives

- 1. To understand the terms related to the Internet and how the Internet is changing the world.
- **2.** To understand how computers are connected to the Internet and demonstrate the ability to use the World Wide Web.

- **3.** 3. Demonstrate an understanding of and the ability to use electronic mail and other internet based services
- 4. Understand the design principles of Web pages and how they are created
- **5.** 5. To develop an ability to create basic Web pages with HTML.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Analyze a web page and identify its elements and attributes.
- CO2. Create web pages using XHTML and Cascading Style Sheets.
- CO3.Build dynamic web pages using JavaScript (Client side programming).
- CO4. Create XML documents and Schemas.
- CO5. Build interactive web applications using AJAX.
- CO6. Expose students to the basic tools and applications used in Web publishing.
- CO7. Provide internet connection to the system and its installation.
- CO8. Suggest appropriate routing algorithm for the network.

Catalog Description

Course Content

Unit I: 12 lecture hours

Introduction: Overview, Network of Networks, Intranet, Extranet and Internet. World Wide Web, Domain and Sub domain, Address Resolution, DNS, Telnet, FTP, HTTP. Review of TCP/IP: Features, Segment, Three-Way Handshaking, Flow Control, Error Control, Congestion control. IP Datagram, IPv4 and IPv6. IP Subnetting and addressing: Classful and Classless Addressing, Subnetting. NAT, IP masquerading, IP tables. Internet Routing Protocol: Routing -Intra and Inter Domain Routing, Unicast and Multicast Routing, Broadcast. Electronic Mail: POP3, SMTP.

Unit II: 8 lecture hours

PERL: Introduction, Variable, Condition, Loop, Array, Implementing data structure, Hash, String, Regular Expression, File handling, I/O handling. JavaScript: Basics, Statements, comments, variable, comparison,

condition, switch, loop, break. Object - string, array, Boolean, reg-ex. Function, Errors, Validation. Cookies: Definition of cookies, Create and Store a cookie with example. Java Applets: Container Class, Components, Applet Life Cycle, Update method; Parameter passing applet, Applications.

Unit III: 12 lecture hours

Client-Server programming In Java: Java Socket, Java RMI. Threats: Malicious code-viruses, Trojan horses, worms; eavesdropping, spoofing, modification, denial of service attacks. Network security techniques: Password and Authentication; VPN, IP Security, security in electronic transaction, Secure Socket Layer (SSL), Secure Shell (SSH). Firewall: Introduction, Packet filtering, Stateful, Application layer, Proxy.

Unit IV: 8 lecture hours

Internet Telephony: Introduction, VoIP. Multimedia Applications: Multimedia over IP: RSVP, RTP, RTCP and RTSP. Streaming media, Codec and Plugins, IPTV. mywbut.com Search Engine and Web Crawler: Definition, Meta data, Web Crawler, Indexing, Page rank, overview of SEO.

Text Books

1. Web Technology: A Developer's Perspective, N.P. Gopalan and J. Akilandeswari, PHI, Learning, Delhi, 2013.

Reference Books/Materials

1. Internetworking Technologies, An Engineering Perspective, Rahul Banerjee, PHI Learning, Delhi, 2011.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term	
			Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

Mapping between COs and POs						
		Mapped				
	Course Outcomes (COs)	Program				
		Outcomes				

CO1	Analyze a web page and identify its elements and attributes.	PO2
CO2	Create web pages using XHTML and Cascading Style Sheets.	РОЗ
СОЗ	Build dynamic web pages using JavaScript (Client side programming).	PO4
CO4	Create XML documents and Schemas.	PO5
CO5	Build interactive web applications using AJAX.	PO4
CO6	Expose students to the basic tools and applications used in Web publishing.	PO4
СО7	Provide internet connection to the system and its installation.	PO9
CO8	Suggest appropriate routing algorithm for the network.	PSO3

		En	Pro	De	Co	Mo	Th	En	Eth	Ind	Co	Proj	Life	Em	Ethi	Kno
		gin	ble	sig	nd	der	e	vir	ics	ivi	mm	ect	-	ploy	cs	wle
		eer	m	n/d	uct	n	en	on		du	unic	man	long	abili	and	dge
		ing	ana	eve	inv	too	gin	me		al	atio	age	Lea	ty	Beh	
		Kn	lys	lop	esti	1	eer	nt		or	n	men	rnin		avio	
		ow	is	me	gat	usa	an	an		tea		t	g		ur	
		led		nt	ion	ge	d	d		m		and				
		ge		of	S		soc	sus		wo		fina				
				sol	of		iet	tai		rk		nce				
				uti	co		У	na								
				ons	mp			bili								
					lex			ty								
					pro											
					ble											
					ms											
C		DO.	DO	DO.	DO.		DO.	DO.	DO.	DO.	DO1	DO1	DO1			
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3

2= moderately mapped

3=strongly mapped

ETCA519A	Blockchains	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Cryptography				
Co-requisites	Basic Mathematics				

Course Objectives

1. Help in understanding Creation of block and working of blockchain technology to innovate and improve business process.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand blockchain technology.
- CO2. Develop blockchain based solutions and write smart contract using Hyperledger Fabric

and Ethereum frameworks.

- CO3. Build and deploy block chain application for on premise and cloud-based architecture.
- CO4. Integrate ideas from various domains and implement them using block chain technologyin different perspectives.

Catalog Description

Through this subject, student will be able to understand the coarse grained aspects of Blockchain Technology. Student will understand the applications of Blockchain and its working in networks. The internals of framework and working will be discussed throughout the course duration.

Course Content

Unit I: 8 lecture hours

Introduction: Overview of Block chain, Public Ledgers, Bitcoin, Smart Contracts, Block in a Blockchain, Transactions, Distributed Consensus, Public vs Private Block chain, Understanding Cryptocurrency to Block chain, Permissioned Model of Block chain, Overview of Security aspects of Blockchain.

Basic Crypto Primitives: Cryptographic Hash Function, Properties of a hash function, Hash pointer and Merkle tree, Digital Signature, Public Key Cryptography, A basic cryptocurrency.

Unit II: 12 lecture hours

Bitcoin and Blockchain: Creation of coins, Payments and double spending, Bitcoin Scripts,

Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay.

Working with Consensus in Bitcoin: Distributed consensus in open environments, Consensus in a Bitcoin network, Proof of Work (PoW) – basic introduction, HashcashPoW, Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of Burn and Proof of Elapsed Time, The life of a Bitcoin Miner, Mining Difficulty, Mining Pool.

Unit III: 12 lecture hours

Permissioned Blockchain: Permissioned model and use cases, Design issues for Permissioned block chains, Execute contracts, State machine replication, Overview of Consensus models for permissioned block chain- Distributed consensus in closed environment, Paxos, RAFT Consensus, Byzantine general problem, Byzantine fault tolerant system, Lamport-Shostak-Pease BFT Algorithm, BFT over Asynchronous systems.

Enterprise application of Blockchain: Cross border payments, Know Your Customer (KYC), Food Security, Mortgage over Block chain, Block chain enabled Trade, We Trade – Trade Finance Network, Supply Chain Financing, Identity on Block chain

Unit IV: 10 lecture hours

Hyperledger Fabric: Architecture, Identities and Policies, Membership and Access Control,

Channels, Transaction Validation, Writing smart contract using Hyperledger Fabric, Writing smart contract using Ethereum, Overview of Ripple and Corda

Text Books

- 1. Melanie Swan, "Block Chain: Blueprint for a New Economy", O'Reilly, 2015
- 2. Josh Thompsons, "Block Chain: The Block Chain for Beginners- Guide to Blockchain Technology and Leveraging Block Chain Programming"
- 3. Daniel Drescher, "BlockChain Basics", Apress; 1st edition, 2017
- 4. AnshulKaushik, "Block Chain and Crypto Currencies", Khanna Publishing House, Delhi.
- 5. Imran Bashir, "Mastering Block Chain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Packt Publishing
- 6. RiteshModi, "Solidity Programming Essentials: A Beginner's Guide to Build SmartContracts for Ethereum and Block Chain", Packt Publishing

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Understand block chain technology.	PO1					

CO2	Develop blockchain based solutions and write smart contract using Hyperledger Fabric and Ethereum frameworks	PO2, PO3
CO3	Build and deploy block chain application for on premise and cloud-based architecture	PO5
CO4	Integrate ideas from various domains and implement them using blockchain technology in different perspectives.	PO5, PO6, PO12

		Е	P	D	С	N	Т	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
		g	О	s	n	d		v	h	d	m	О	f	i	s	О	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	у
		e	e	n	С	n	g	О	s	i	n	С	1	S	r	S	s	s
		e	m	/	t	t	_	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	c	m	n		c	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	V	V	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		c	R		
		K	У	1	S	S	a	a		r	O	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		W	S	m	g	e	S	S		a		e	i			О		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		0	0		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t		
				u	С			i				a				i		
				t .	О			1				n				e		
				i	m			i				С				S		
				0	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					o b													
					1													
					e													
					m													
					S													
Cours	Cours	Р	Р	Р	200	P	Р	P	Р	Р	D .						D.C.	200
e	e	О	О	О	PO 4	O	0	О	О	О	PO 10	PO 11	PO 12	PS	PS	PS	PS O4	PS O5
Code	Title	1	2	3	7	5	6	7	8	9	10	11	12	O1	O2	О3	04	

ETC A519 A	Block chain	3	3	3		2	2							3	2	1	1	2	
------------------	----------------	---	---	---	--	---	---	--	--	--	--	--	--	---	---	---	---	---	--

2= moderately mapped

3=strongly mapped

ETCS401A	Artifical Intelligence	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objectives

- 1. To have clear understanding of the problem-solving processes.
- **2.** To explore Search strategies ranging from blind or uninformed search to heuristic or informed search are discussed.
- 3. To understand real world always entails uncertainty and the concept of uncertainty is introduced.
- **4.** To know about Probabilistic reasoning, representing knowledge under uncertainty, Bayesian Networks, Exact and approximate inference in Bayesian Networks
- 5. To gain idea of supervised, unsupervised and reinforcement learning is covered.
- **6.** To introduce the students to the challenges involved in designing intelligent

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the various searching techniques, constraint satisfaction problem and example problems- game playing techniques.
- CO2. Apply these techniques in applications which involve perception, reasoning and learning.
- CO3. Explain the role of agents and how it is related to environment and the way of evaluating

it and how agents can act by establishing goals.

CO4. Acquire the knowledge of real world Knowledge representation.

CO5. Analyze and design a real world problem for implementation and understand the dynamic behavior of a system.

CO6. Use different machine learning techniques to design AI machine and enveloping applications for real world problems.

CO7.Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.

Catalog Description

The course introduces the theoretical building blocks necessary to create intelligent machines. While we may struggle to define intelligence in an absolute sense, we can agree upon multiple approaches toward creating AI; from an initial attempt at acting humanly to a broader context of acting rationally. Solving problems which are seemingly simple for humans can seem like insurmountable hurdles for machines.

Course Content

Unit I: 8 lecture hours

Scope of AI: Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems, AI techniques-search knowledge, abstraction. Problem Solving (Blind): State space search; production systems, search space control; depthfirst, breadth-first search. Heuristic Based Search: Heuristic search, Hill climbing, best-first search, A* Algorithm, Problem Reduction, Constraint Satisfaction

Unit II: 12 lecture hours

Knowledge Representation: Predicate Logic: Unification, Modus Ponens, Modus Tokens, Resolution in Predicate Logic, Conflict Resolution Forward Chaining, Backward Chaining, Declarative and Procedural Representation, Rule based Systems. Structured Knowledge Representation: Semantic Nets: Slots, exceptions and default frames, conceptual dependency

Unit III: 12 lecture hours

Handling Uncertainty: Non-Monotonic Reasoning, Probabilistic reasoning: Bayesian Inference, use of uncertainty factors. Natural Language Processing: Introduction, Syntactic Processing, Semantic Processing, Pragmatic Processing.

Unit IV: 8 lecture hours

Learning: Concept of learning, learning automation, genetic algorithm, learning by inductions, neural nets. Expert Systems: Need and justification for expert systems, knowledge acquisition, Case Studies: MYCIN, RI.

Text Books

1. Artificial Intelligence, E. Rich and K. Knight, TMH.

Reference Books/Materials

- 1. Artificial Intelligence, P. H. Winston, Pearson Education.
- 2. Introduction to AI and Expert Systems, D. W. Patterson, PHI.
- 3. Principles of AI, N. J. Nilsson, Narosa Publishing House

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the various searching techniques, constraint satisfaction problem and example problems- game playing techniques.	PO1
CO2	Apply these techniques in applications which involve perception, reasoning and learning.	PO4
CO3	Explain the role of agents and how it is related to environment and the way of evaluating it and how agents can act by establishing goals.	PO5

CO4	Acquire the knowledge of real world Knowledge representation.	PO2
CO5	Analyze and design a real world problem for implementation and understand the dynamic behavior of a system.	РОЗ
CO6	Use different machine learning techniques to design AI machine and enveloping applications for real world problems.	PO3
CO7	Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.	PSO1

		En gin eer ing Kn ow led ge	Proble m ana lys is	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e en gin eer an d soc iet y	En vir on me nt an d sus tai na bili ty	Ethics	Ind ivi du al or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lea rnin g	Em ploy abili ty	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETCS401 A	ARTIFICAL INTELLIGENC E	2	3	2	3	3								3		

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS451A	Artificial Intelligence Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Prolog/ Python				
Co-requisites					

Course Objectives

- 1. To have clear understanding of the problem-solving processes.
- **2.** To explore Search strategies ranging from blind or uninformed search to heuristic or informed search are discussed.
- 3. To understand real world always entails uncertainty and the concept of uncertainty is introduced.
- **4.** To know about Probabilistic reasoning, representing knowledge under uncertainty, Bayesian Networks, Exact and approximate inference in Bayesian Networks
- **5.** To gain idea of supervised, unsupervised and reinforcement learning is covered.
- **6.** To introduce the students to the challenges involved in designing intelligent

Course Outcomes

On completion of this course, the students will be able to

- CO1. Demonstrate working knowledge in Prolog in order to write simple Prolog programs
- CO2. Understand different types of AI agents know various AI search algorithms (uninformed, informed, heuristic, constraint satisfaction, genetic algorithms)
- CO3. Understand the fundamentals of knowledge representation (logic-based, frame-based, semantic nets), inference and theorem proving
- CO4. Know how to build simple knowledge-based systems
- CO5.Demonstrate working knowledge of reasoning in the presence of incomplete and/or uncertain information

Catalog Description

While AI applications can be developed in any number of different languages, certain language features make programming AI applications straightforward. Prolog is structured in such a way that AI program development is supported by Prolog language features. Other languages, such as Java, support AI

programming through code libraries. This course will provide students with an introduction to AI via programming features that support basic AI applications. The main of this course is make students familiar with AI programming and be able to use it in future models to implement various AI applications.

List of Experiments (Indicative)

1	Write a program to solve 8-queens problem in Prolog.	2 lab hours
2	Solve any problem using depth first search in Prolog.	2 lab hours
3	Solve any problem using best first search in Prolog.	2 lab hours
4	Solve 8-puzzle problem using best first search in Prolog.	2 lab hours
5	Solve Robot (traversal) problem using means End Analysis.	2 lab hours
6	Solve traveling salesman problem in Prolog.	2 lab hours
7	Write a Program to Implement Tic-Tac-Toe game in Prolog/python.	2 lab hours
8	Write a Program to Implement Water-Jug problem.	3 lab hours
9	Write a Program to Implement Monkey Banana Problem using Python.	2 lab hours
10	Write a Program to Implement N-Queens Problem.	4 lab hours

11	Write a Program to Implement Missionaries-Cannibals Problems.	4 lab hours
14	Make a minor project using AI.	3 lab hours
15	Study about various applications of AI.	4 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%) 10		10	20	10	50

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Demonstrate working knowledge in Prolog in order to write simple Prolog programs	PO1					
CO2	Understand different types of AI agents know various AI search algorithms (uninformed, informed, heuristic, constraint satisfaction, genetic algorithms)	PO4					
CO3	Understand the fundamentals of knowledge representation (logic-based, frame-based, semantic nets), inference and theorem proving	PO5					

CO4	Know how to build simple knowledge-based systems	PO2
CO5	Demonstrate working knowledge of reasoning in the presence of incomplete and/or uncertain information.	PSO3

		En gin eer ing Kn ow led ge	Pro ble m ana lysi s	De sig n/d eve lop me nt of sol uti ons	Co nd uct inv esti gat ion s of co mp lex pro ble ms	Mo der n too l usa ge	Th e eng ine er and soc iet y	En vir on me nt and sus tai nab ilit y	Ethics	Ind ivi dua l or tea m wo rk	Co mm unic atio n	Proj ect man age men t and fina nce	Life - long Lear ning	Emp loya bilit y	Ethi cs and Beh avio ur	Kno wle dge
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ETCS451A	ARTIFICIAL INTELLIGENCE LAB	2	3		3	3										3

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCA364A	Net Framework Lab	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Knowledge of C and C++				
Co-requisites					

Course Objectives

- 1. To learn the basics of .net Frame work and C# language
- 2. To learn C# elements and OOPS concepts
- 3. To learn interface and inheritance concepts in C# language
- 4. To learn fundamentals of window application programming and create a window application
- 5. To develop web applications and learn advanced features of C#

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Introduction to the .NET framework.
- CO2. Students will describe the basic structure of a Visual Basic.NET project and use main features of the integrated development environment (IDE)
- CO3. Learn about ASP. NET controls and create applications using Microsoft Windows Forms
- CO4. Students will create applications that use ADO. NET
- CO5. To understand and be able to explain Security in the .NET framework and Deployment in the .NET.

Catalog Description

Based on theory subject **ETCS 324A**, the following experiments are to be performed. It enables students to understand the concept of .net Framework and create applications.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	tage (%) 10 10		20	10	50

	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Introduction to the .NET framework.	PO1, PO2					
CO2	Students will describe the basic structure of a Visual Basic.NET project and use main features of the integrated development environment (IDE)	PO3					
CO3	Learn about ASP. NET controls and create applications using Microsoft Windows Forms	PO5					
CO4	Students will create applications that use ADO. NET	PO5					
CO5	To understand and be able to explain Security in the .NET framework and Deployment in the .NET.	PO4					

List of Experiments (Indicative)

1	Write a program using web controls to a)Factorial of a number b) Money Conversion c) Quadratic Equation d) Temperature Conversion e) Login Control	4 lab hours
2	Write a program for Ad rotator Control	4 lab hours
3	2. Write a program for Calendar controla) Display a message in calendarb) Display vacations in calendar	4 lab hours

	c) Select a day in calendar control using style	
4	Write a program for Tree view control and use various operation of Tree view control	4 lab hours
5	Write a program to design graphical user interface and display records stored in database	4 lab hours
6	Write a program to insert and delete the records in database	4 lab hours
7	Write a program of Data binding using drop down list control	4 lab hours
8	Design a interactive website for admissions in university.	4 lab hours

	<u> </u>	Eng	Pro	Desi	Cond	M	Th	Envir	Е	Indi	Com	Proj	Life-	Emp	Ethi
	1	ine	ble	gn/d	uct	od	e	onme	t	vid	muni	ect	long	loya	cs
	1	erin	m	evel	invest	er	en	nt and	h	ual	catio	man	Lear	bilit	and
	1	g	ana	opm	igatio	n	gi	sustai	i	or	n	age	ning	у	Beh
1	1	Kn	lysi	ent	ns of	to	ne	nabilit	c	tea	'	ment	'	' '	avio
1	1	owl	S	of	comp	ol	er	У	S	m	'	and	'	'	r
	1	edg	1 '	solut	lex	us	an		'	wor	'	finan	'	'	•
1	'	e	1 '	ions	probl	ag	d		'	k	'	ce	'	'	
	1	1 '	1 '	1 '	ems	e	so ·		'	'	'	'	'	'	
	1	1 '	1 '	1 '	'	'	C1		'	1 '	'	'	'	'	
	1	1 '	1 '	1 '	'	'	et		'	1 '	'	'	'	'	
-	 	 	 	 '	 	 '	У	 	P	 	 	 	 	 	1
Course	Course	PO1	PO2	PO3	PO4	P	PO	PO7	O	PO9	PO10	PO11	PO12		
Code	Title	'	'	'	'	O5	6		8	'	'	1	'	PSO1	PSO2
ETCA	.Net														
364A	Framew	2	2	3	2	3	/ '		'	1 '	'	3	'	3	
	ork lab						'		<u> </u>	<u> </u>	<u> </u> '		'		

1=weakly mapped 2= moderately mapped 3=strongly mapped

ETCS464A	Major Project	L	T	P	C
Version 1.0		-	-	-	6
Pre-requisites/Exposure					
Co-requisites					

The course is designed to provide an opportunity to students to demonstrate the ability to devise, select and use a range of methodologies and tools to the Chosen/Given project, applying the theoretical knowledge to a real life situation. Experiential Learning outside classroom through self-exploration, practical experience, Industry, field experience, live experience, research, design projects etc.

The learning process in the Project seeks out and focuses attention on many latent attributes, which do not surface in the normal class room situations. These experiential learning attributes through project includes Intellectual ability, Professional judgment and decision making ability, Inter-disciplinary approach, Skills for data handling, Ability in written and oral presentation, Sense of responsibility Developing professional Skills Application of theory, concepts in given industry /practical / field scenario.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Use applied scientific knowledge to identify and implement relevant principles of mathematics and computer science.
- C02. Use the relevant tools necessary for engineering practice.
- CO3. Define overall needs and constraints to solve a problem and develop/ design a prescribed engineering sub-system.
- CO4. Communicate effectively and learn to be a team player.

Catalog Description

Students are expected make a project based on the latest advancements related to the parent branch of Engineering. Students may opt for an in-disciplinary project (if feasible).

The project may be a complete hardware or a combination of hardware and software under the guidance of a Supervisor from the Department. This is expected to provide a good training for the student(s) in technical aspects

Student will be continuously evaluated during the semester in form of Project Progress Seminars. At the end of the semester, assessment of the research/project work of each student will be made by the board of examiners including supervisors on the basis of a viva-voce examination and the report submitted by the student.

Course Content

The assignment to normally include:

- 1. Review and finalization of the Approach to the Problem relating to the assigned topic.
- 2. Preparing an Action Plan for conducting the investigation, including team work.
- 3. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed.
- 4. Final development of product/process, testing, results, conclusions and future directions.
- 5. Preparing a report in the standard format for being evaluated by the Department.
- 6. Final project presentation before a Departmental Committee.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid	Presentation/	End Term
			Term	Assignment/ etc.	Exam
			Exam		
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Use applied scientific knowledge to identify and implement relevant principles of mathematics and computer science.	PO3
CO2	Use the relevant tools necessary for engineering practice.	PO5
СОЗ	Define overall needs and constraints to solve a problem and develop/design a prescribed engineering sub-system.	PO3
CO4	Communicate effectively and learn to be a team player.	PO10

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	О	h	n	t	n	О	r	i	k	e	r	t	n
		g	О	s	n	d	e	v	h	d	m	О	f	i	S	О	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	С	v	u	e	-	1	P	e	c	У
		e	e	n	c	n	g	О	S	i	n	c	1	S	r	S	S	S
		e	m	/	t	t	i	n		d	i	t	О		a	S		i
		r	a	d	i	О	n	m		u	С	m	n		С	i		S
		i	n	e	n	О	e	e		a	a	a	g		t	О		
		n	a	V	V	1	e	n		1	t	n	L		i	n		
		g	1	e	e	u	r	t		О	i	a	e		С	a		
		K	У	1	S	S	a	a		r	О	g	a		e	1		
		n	S	О	t .	a	n	n		t	n	e	r		S	R		
		0	i	p	i	g	d	d		e		m	n			e		
		W	S	m	_	e	S	S		a		e	i			S		
		1		e	a		О	u		m		n	n			p		
		e		n	t .		c	S		W		t	g			О		
		d		t	i		i	t		0		a				n		
		g		0	О		e	a		r		n				S .		
		e		f	n		t	i		k		d				i 1.		
				S	S		У	n				f				b		
				0	0			a				i				i 1		
				1	f			b :				n				1 i		
				u	c			i				a						
				t i	0 m			l i				n				t i		
					m							c						
				0	р 1			t				e				e s		
				n s	e			У								8		
				3	X													
					p r													
					0													
					b													
					1													
					e													
					m													
					S													
Causana	Cou	P	P	P	P	P	P	P	Р	P								
Course Code	rse	0	0	0	O	0	O	O	0	0	PO	PO	PO	PS	PS	PS	PS	PS
Code	Title	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3	O4	O5

	Maj										
ETCS4	or		_	2			2				
64A	Proj		3	2			3				
	ect										

2= moderately mapped

3=strongly mapped

ETCS422A	Cloud Computing	L	T	P	С
Version 1.0		4	0	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To provide students with the fundamentals and essentials of Cloud Computing.
- 2. To provide students a sound foundation of the Cloud Computing so that they are able to start using and adopting Cloud Computing services and tools in their real-life scenarios.
- 3. To enable students exploring some important cloud computing driven commercial systems and applications.
- 4. To expose the students to frontier areas of Cloud Computing and information systems, while providing sufficient foundations to enable further study and research.

Course Outcomes

On completion of this course, the students will be able to

CO1. Implement a public cloud instance using a public cloud service provider.

CO2. Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.

CO3. Apply the fundamental concepts in data centres to understand the trade-offs in power, efficiency and cost.

CO4. Apply trust-based security model to different layers.

CO5. Develop a risk-management strategy for moving to the Cloud.

CO6. Describe big data and use cases from selected business domains.

CO7. Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.

CO8. Analyze various cloud programming models and apply them to solve problems on the cloud.

Catalog Description

The course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its focus is on parallel programming techniques for cloud computing and large-scale distributed systems which form the cloud infrastructure. The topics include overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, security in the cloud, and multicore operating systems. Students will study state-of-the-art solutions for cloud computing developed by Google, Amazon, Microsoft, Yahoo, VMWare, etc. Students will also apply what they learn in one programming assignment and one project executed over Amazon Web Services.

Course Content

Unit I: 12 lecture hours

Introduction: Cloud computing fundamentals, the role of networks in Cloud computing, Essential characteristics of Cloud computing, Cloud deployment model, Cloud service models, Multi-tenancy, Cloud cube model, Cloud economics and benefits, Cloud types and service scalability over the cloud, challenges in cloud NIST guidelines, Cloud economics and benefits, Cloud computing platforms - IaaS: Amazon EC2, PaaS: Google App Engine, Microsoft Azure, SaaS. Open Source platforms: OpenStack.

Unit II: 10 lecture hours

Virtualization, Server, Storage and Networking: Virtualization concepts, types, Server virtualization, Storage virtualization, Storage services, Network virtualization, service virtualization, Virtualization management, Virtualization technologies and architectures, Internals of virtual machine, Measurement and profiling of virtualized applications. Hypervisors: KVM, Xen, Hyper V, VMware hypervisors and their features.

Unit III: 10 lecture hours

Data in Cloud Computing: Relational databases, Cloud file systems: GFS and HDFS, BigTable, HBase and Dynamo. MapReduce and extensions: Parallel computing, the map-Reduce model, Parallel efficiency of MapReduce, Relational operations using Map-Reduce, Enterprise batch processing using MapReduce.

Cloud Security: Cloud security fundamentals, Vulnerability assessment tool for cloud, Privacy and Security in cloud. Cloud computing security architecture: General Issues, Trusted Cloud computing, Secure Execution Environments and Communications, Micro - architectures; Identity Management and Access control, Autonomic security, Security challenges: Virtualization security management - virtual threats, VM Security Recommendations, VM - Specific Security techniques, Secure Execution Environments and Communications in cloud.

Unit IV: 8 lecture hours

Issues in Cloud Computing: Implementing real time application over cloud platform, Issues in Intercloud environments, QOS Issues in Cloud, Dependability, data migration, streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud computing environment. Cloud Middleware. Mobile Cloud Computing. Inter Cloud issues. A grid of clouds, Sky computing, load balancing, resource optimization, resource dynamic reconfiguration, Monitoring in Cloud

Text Books

1. Cloud Computing, Dr. Kumar Saurabh, Wiley Publication

Reference Books/Materials

- 1. Cloud computing Automated virtualized data center, Venkata Josyula, CISCO Press
- 2. Cloud and virtual data storage networking, Greg Schulr CRC Press
- 3. Handbook of Cloud Computing, BorkoFurht, Springer

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping be	etween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Implement a public cloud instance using a public cloud service provider.	PO5
CO2	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.	PO1
CO3	Apply the fundamental concepts in data centres to understand the trade-offs in power, efficiency and cost.	PO4
CO4	Apply trust-based security model to different layers.	PO5
CO5	Develop a risk-management strategy for moving to the Cloud.	PO2
CO6	Describe big data and use cases from selected business domains.	PO3
CO7	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.	PO3
CO8	Analyze various cloud programming models and apply them to solve problems on the cloud.	PO9

Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
n	r	e	0	0	h	n	t	n	0	r	i	k	e	r	t	n
g	О	s	n	d	e	v	h	d	m	О	f	i	s	О	h	a
i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
n	1	g	u	r	n	r	c	V	u	e	-	1	P	e	c	y
e	e	n	c	n	g	О	S	i	n	c	1	s	r	S	S	S
e	m	/	t	t	i	n		d	i	t	О		a	S		i
r	a	d	i	О	n	m		u	c	m	n		c	i		S
i	n	e	n	О	e	e		a	a	a	g		t	О		
n	a	V	V	1	e	n		1	t	n	L		i	n		
g	1	e	e	u	r	t		О	i	a	e		С	a		
K	У	1	S	S	a	a		r	О	g	a		e	1		
n	S	О	t	a	n	n		t	n	e	r		S	R		
О	i	p	i	g	d	d		e		m	n			e		
W	S	m	g	e	S	S		a		e	i			S		
1		e	a		О	u		m		n	n			p		
e		n	t		c	S		W		t	g			О		
d		t	i		i	t		О		a				n		
g		О	О		e	a		r		n				S		
e		f	n		t	i		k		d				i		
		S	S		У	n				f				b		
		0	0			a				i				i		
		1	f			b				n				1		
		u	c			i				a				i		
		t	О			1				n				t		
		i	m			i				c				i		
		0	p			t				e				e		
		n	1			У								S		
		S	e													
			X													
			p													
			r													
			0													
			b													
			1													
			e m													
			m													
			S													

Cour se Cod e	Cour se Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5
ETC S422 A	Clou d Com putin g	2	3	3	2	3				3				3		3		

2= moderately mapped

3=strongly mapped

ETCA 362A	Cloud Computing Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Practical learning	•		•	
Co-requisites					

Course Objectives

- 1. Define & implement Virtualization using different types of Hypervisors
- 2. Describe steps to perform on demand application delivery
- 3. Examine the installation and configuration of Open stack cloud
- 4. Analyze and understand the functioning of different components involved in Amazon web services cloud platform.
- 5. Describe the functioning of Platform as a Service

6. Design & Synthesize Storage as a service using own Cloud

Course Outcomes

On completion of this course, the students will be able to

- CO1. Implement a public cloud instance using a public cloud service provider.
- CO2. Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
- CO3. Apply the fundamental concepts in data centres to understand the trade-offs in power, efficiency and cost.
- CO4. Apply trust-based security model to different layers.
- CO5. Develop a risk-management strategy for moving to the Cloud.
- CO6. Describe big data and use cases from selected business domains.
- CO7. Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.
- CO8. Analyze various cloud programming models and apply them to solve problems on the cloud.

Catalog Description

This course is designed to introduce the concepts of Cloud Computing as a new computing paradigm. The students will have an opportunity to explore the Cloud Computing various terminology, concepts, principles and applications. This course provides a hands-on comprehensive study of Cloud concepts and capabilities across the various Cloud service models including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). A variety of real case studies and existing in market cloud-based tools will be identified and studied in order to provide students with a close overview to Cloud Computing applications.

Course Content

1	Development of applications on Google app engine.	4 lab hours
2	Case study of private Cloud setup through OpenStack	4 lab hours
3	Case study of private Cloud setup through CloudStack	4 lab hours
4	Case study of XEN/VMware/KVM hypervisor	4 lab hours
5	Case study of Amazon ec2.	4 lab hours

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Implement a public cloud instance using a public cloud service provider.	PO5
CO2	Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.	PO1

CO3	Apply the fundamental concepts in data centres to understand the trade-offs in power, efficiency and cost.	PO4
CO4	Apply trust-based security model to different layers.	PO5
CO5	Develop a risk-management strategy for moving to the Cloud.	PO2
CO6	Describe big data and use cases from selected business domains.	PO3
CO7	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.	РОЗ
CO8	Analyze various cloud programming models and apply them to solve problems on the cloud.	PO9

	Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
	n	r	e	О	0	h	n	t	n	О	r	i	k	e	r	t	n
	g	О	S	n	d	e	v	h	d	m	О	f	i	S	О	h	a
	i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
	n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	y
	e	e	n	c	n	g	О	S	i	n	c	1	S	r	S	S	S
	e	m	/	t	t	i	n		d	i	t	О		a	S		i
	r	a	d	i	О	n	m		u	c	m	n		c	i		S
	i	n	e	n	О	e	e		a	a	a	g		t	О		
	n	a	V	V	1	e	n		1	t	n	L		i	n		
	g	1	e	e	u	r	t		О	i	a	e		c	a		
	K	У	1	S	S	a	a		r	О	g	a		e	1		
	n	S	О	t	a	n	n		t	n	e	r		S	R		
	О	i	p	i	g	d	d		e		m	n			e		
	W	S	m	g	e	S	S		a		e	i			S		
	1		e	a		0	u		m		n	n			p		
	e		n	t i		c i	S		W		t	g			0		
	d		t				t		0		a				n		
	g e		o f	o n		e t	a i		r k		n d				s i		
			S	S		y	n		K		f				b		
			0	0		y	a				i				i		
			1	f			b				n				1		
			u	c			i				a				i		
			t	0			1				n				t		
			i	m			i				c				i		
			О	p			t				e				e		
			n	1			у								S		
			S	e													
				X													
				p													
				r													
				О													
				b													
				1													
				e													
				m													
				S													

Cour se Cod e Cour se ritle	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4	PS O5
ETC A36 2A g Lab	2	3	3	2	3				3				3		3		

2= moderately mapped

3=strongly mapped

ETCS 424A	Data Warehouse and Data Mining	L	T	P	С
Version 1.0		4	0	0	4
Pre-requisites/Exposure	Basic Database concepts, Query tools				
Co-requisites					

Course Objectives

- 1. Be familiar with mathematical foundations of data mining tools.
- 2. Understand and implement classical models and algorithms in data warehouses and data mining
- 3. Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering.

- 4. Master data mining techniques in various applications like social, scientific and environmental context.
- 5. Develop skill in selecting the appropriate data mining algorithm for solving practical problems.

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Understand the functionality of the various data mining and data warehousing component
- CO2. Appreciate the strengths and limitations of various data mining and data warehousing models
- CO3. Explain the analyzing techniques of various data
- CO4. Describe different methodologies used in data mining and data ware housing
- CO5. Compare different approaches of data ware housing and data mining with various technologies

Catalog Description

This course will introduce the concepts of data ware house and data mining, which gives a complete description about the principles, used, architectures, applications, design and implementation of data mining and data ware housing concepts.

Course Content

Unit I: 10 lecture hours

Introduction: Evolution Of Data Warehousing (Historical Context), The Data Warehouse - a Brief Overview, Characteristics, Operational Database Systems and Data Warehouse(OLTP & OLAP), Data Marts, Metadata.

Principles of Data Warehousing(Architecture and Design Techniques): System Processes, Data Warehousing Components, Architecture for a Warehouse, Three-tier Data Warehouse Architecture, Steps for the design and construction of Data Warehouses, Conceptual Data Architecture, Logical Architectures, Design Techniques.

Unit II: 12 lecture hours

Multidimensional Data Models: Types of Data and Their Uses, From Tables and Spreadsheets to Data Cubes, Identifying Facts and Dimensions, Fact Tables, Designing Fact Tables, Designing Dimension Table, Data Warehouse Schemas- STAR Schema, Snowflake Schema, OLAP, OLAP Operations, Hypercube, ROLAP, MOLAP, From Data warehousing to Data Mining, Data warehouse Usage

Unit III: 12 lecture hours

Data Mining: Motivation, Importance, Knowledge Discovery Process (KDD), KDD and Data Mining, Data Mining vs. Query Tools, Kind of Data, Data preprocessing, Functionalities, Interesting Patterns, Classification of data mining systems, Major issues.

Unit IV: 12 lecture hours

Classification and Prediction: Classification & Prediction, Issues Regarding Classification & Prediction, Classification by Decision Tree Induction, Bayesian Classification, Classification by Back Propagation, Classification Parameters.

Cluster Analysis: Types of Data in Cluster Analysis, Partitioning Method, Hierarchical Method, Density Based Method, Grid Based Method, Model Based Clustering Method, Outlier Analysis.

Mining Association Rules: Association Rule Mining, Market Basket Analysis, Types of Association Rules, Methods for Mining Association

Text Books

Kamber and Han, "Data Mining Concepts and Techniques", Hartcourt India P. Ltd

Reference Books/Materials

- 1. W. H. Inmon, "Building the operational data store", 2nd Ed., John Wiley.
- 2. Paul Raj Poonia, "Fundamentals of Data Warehousing", John Wiley & Sons.
- 3. Sam Anahony, "Data Warehousing in the real world: A practical guide for building decision support systems", John Wiley.

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the functionality of the various data mining and data warehousing component	PO1
CO2	Appreciate the strengths and limitations of various data mining and data warehousing models	PO1
CO3	Explain the analyzing techniques of various data	PO2
CO4	Describe different methodologies used in data mining and data ware housing	PO2
CO5	Compare different approaches of data ware housing and data mining with various technologies	PO4, PO5

		Е	P	D	С	N	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	0	0		n	t	n	0	r	i	k	e	r	t	n
			0	s	n	d		V	h	d	m	0	f	i	s	0	h	a
		g i	b	i	d	e		i	i	i	m	j	e	1	t	f	i	1
		n	1		u	r	n	r	c	v	u	e	-	1	P	e	c	
		e	e	g n	c	n		0	s	i	n	c	1	S	r	s	s	y s
		e	m	/	t	t	g i	n		d	i	t	0	3	a	S	3	i
		r	a	d	i	0		m		u	c	m	n		c	i		S
		i	n	e	n	o		e		a	a	a			t	0		
		n	a	v	v	1	e	n		1	t	n	g L		i	n		
			1	e	e	u		t		0	i	a	e		c	R		
		g K		1	s	S	a	a		r	0		a		e	e		
		n	y s	0	t	a		n		t	n	g e	r		s	s		
		0	i		i			d		e	11	m	n		3			
		w	S	p m		g e	S	S		a		e	i			p o		
		1	3	e	g a		0	u		m		n	n			n		
				n	t		c	S		W		t				S		
		e d		t	i		i	t		o		a	g			i		
				0	0		e	a		r		n				b		
		g e		f			t	i		k		d				i		
		C			n					_ K		f				1		
				S	S		У	n				i				i		
				0 1	o f			a b										
								i				n				t i		
				u	С			_				a						
				t i	0			l i				n				e s		
					m							c				8		
				0	p			t				e						
				n	1			У										
				S	e													
					X													
					p													
					r													
					0 b													
					b													
					1													
					e													
					m													
					S													
Cours	G					P												
e	Cours	РО	P	P	РО	O	P	P	P	P	РО	РО	РО	PS	PS	PS	PS	PS
Code	e Title	1	O2	О3	4	5	O6	O7	O8	O9	10	11	12	01	O2	O3	O4	O5

ETCS 424A	Data wareh ouse and data minin g	3	3		3	3								3	2	1	2	2
--------------	--	---	---	--	---	---	--	--	--	--	--	--	--	---	---	---	---	---

2= moderately mapped

3=strongly mapped

ETCS463A	Data Warehousing and Data Mining Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basic Database concepts, Query tools				
Co-requisites					

Course Objectives

- 1. Be familiar with mathematical foundations of data mining tools.
- 2. Understand and implement classical models and algorithms in data warehouses and data mining
- 3. Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering.
- 4. Master data mining techniques in various applications like social, scientific and environmental context.

5. Develop skill in selecting the appropriate data mining algorithm for solving practical problems.

Course Outcomes

On completion of this course, the students will be able to:

- CO1. Able to get the acquaintance to WEKA tool
- CO2. Competent to preprocess the data for mining
- CO3. Proficient in generating association rules
- CO4. Able to build various classification models
- CO5. Able to realize clusters from the available data

Catalog Description

The main objective of this lab is to impart the knowledge on how to implement classical models and algorithms in data warehousing and data mining and to characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering. At the end, the course provides a comparison of different conceptions of data mining.

List of Experiments (Indicative)

1	Demonstration of data pre-processing on datasets	2 lab hours
2	To list all the categorical (or nominal) attributes and the real valued attributes	4 lab hours
3	Create a data classification model using decision tree	4 lab hours
4	Create a data classification model using Naive Bayes	2 lab hours
5	Create a data classification model using rule based classifies	2 lab hours
6	Create a data classification model using statistical classifiers.	4 lab hours
7	Create a data classification model using neural networks.	4 lab hours
8	Create a data classification model	4 lab hours

9	Demonstrate the working of k-means algorithm for clustering the data.	4 lab hours
10	Create a clustering model using hierarchical clustering algorithm.	2 lab hours

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Able to get the acquaintance to WEKA tool	PO5
CO2	Competent to preprocess the data for mining	PO2
CO3	Proficient in generating association rules	PO4
CO4	Able to build various classification models	PO3
CO5	Able to realize clusters from the available data	PO4

		E n g i n e e r i n g K n o w l e d g e	Problemanalyssiss	D e si g n/ d e v el o p m e nt o f s ol ut io n s	Co nd uc t in ve sti ga tio ns of co m pl ex pr ob le ms	M o d e r n t o o l u s a g e	Theeengineerandsocciety	En vir on me nt an d sus tai na bili ty	E t h i c s	I n d i v i d u a l o r t e a m w o r k	C o m u ni ca ti o n	Project man a gent men a n d fin a n ce	Li fe lo n g L ea rn in g	S ki II s	B es t Pr ac ti ce s	Pr of es si o n al R es p o ns ib ili ti es	
Cours e Code	Course Title	PO1	PO2	PO3	PO4	P O 5	P O6	PO7	P O 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PS
ETCS 463A	Data wareho use and data mining Lab		2	3	3	3								3	2	3	

2= moderately mapped

3=strongly mapped

ETCS421A	Internet of Things	L	Т	P	С
Version 1.0		4	0	0	4
Pre-requisites/Exposure	Sensors, System Integration	•			
Co-requisites	Cloud and Network Security				

Course Objectives

The objective of this course is to impart necessary and practical knowledge of components of Internet of Things and develop skills required to build real-time IoT based projects

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand IoT and its hardware and software components
- CO2. Interface I/O devices, sensors and communication mobiles
- CO3. Remotely monitor data and control devices
- CO4. Develop real life IoT based projects

Catalog Description

The Internet of Things (IoT) is everywhere. It provides advanced data collection, connectivity, and analysis of information collected by computers everywhere—taking the concepts of Machine-to-Machine communication farther than ever before. This course gives a foundation in the Internet of Things, including the components, tools, and analysis by teaching the concepts behind the IoT and a look at real-world solutions.

Course Content

Unit I: 8 lecture hours

Introduction to IoT: Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs. Machine to Machine, Difference between IoT and M2M, Software Define Network

Unit II: 9 lecture hours

Network and Communication Aspects: Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination.

Unit III: 10 lecture hours

Challenges in IoT: Design challenges, Development challenges, Security challenges, other challenges. Home automation, Industry applications, Surveillance applications, Other IoT applications

Unit IV: 12 lecture hours

Developing IoT's: Input/output Programming: Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

Text Books

- 1. Vijay Madisetti, ArshdeepBahga, "Internet of Things: A Hands-On Approach"
- 2. WaltenegusDargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"

Modes of Evaluation: Quiz I/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand IoT and its hardware and software components	PO2
CO2	Interface I/O devices, sensors and communication mobile.	PO1
CO3	Remotely monitor data and control devices	PO4

		CO4	•	De	velop	real	life Io	T bas	sed pr	ojects							P()3	
			Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
			n	r	e	О	0	h	n	t	n	О	r	i	k	e	r	t .	n
			g i	o b	s i	n d	d e	e e	v i	h i	d i	m m	o j	f e	i 1	s t	o f	h i	a 1
			n	1	g	u	r	n	r	c	V	u	e e	-	1	P	e	c	y
			e	e	n	c	n	g	0	S	i	n	c	1	s	r	s	s	s
			e	m	/	t	t	i	n		d	i	t	О		a	S		i
			r	a	d	i	О	n	m		u	c	m	n		c	i		S
			i	n	e	n	0	e	e		a	a	a	g		t ·	0		
			n	a 1	V	V	1	e r	n t		1	t i	n a	L		i c	n R		
			g K	y	e 1	e s	u s	a	a		o r	0	g	e a		e	e		
			n	S	0	t	a	n	n		t	n	e	r		s	s		
			О	i	p	i	g	d	d		e		m	n			p		
			W	S	m	g	e	S	S		a		e	i			О		
			1		e	a		О	u		m		n	n			n		
			e		n	t i		c i	S		W		t	g			S		
			d o		t o	0		e e	t a		o r		a n				i b		
			g e		f	n		t	i		k		d				i		
					S	s		у	n				f				1		
					О	О			a				i				i		
					1	f			b				n				t		
					u	c			i				a				i		
					t i	o m			l i				n c				e s		
					0	p			t				e						
					n	1			у										
					S	e													
						X													
						p													
						r													
						o b													
						1													
						e													
						m													
						S													
	our	Cou	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО				PS	PS
se		rse	1	2	3	4	5	6	7	8	9	10	11	12	PS O1	PS O2	PS O3	O4	O5
	od	Titl													01	32	55		

e	e											
	Inte											
ETC	rnet									3		
S421	of	2	2	3	3					3	2	3
A	Thi											
	ngs											

2= moderately mapped

3=strongly mapped

ETCS457A	Internet of Things Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Sensors, System Integration			•	
Co-requisites	Cloud and Network Security				

Course Objectives

The objective of this course is to impart necessary and practical knowledge of components of Internet of Things and develop skills required to build real-time IoT based projects

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand IoT and its hardware and software components
- CO2. Interface I/O, sensors and communication mobiles
- CO3. Remotely monitor data and control devices
- CO4. Develop real life IoT based projects

Catalog Description

This course complements ETCS 480A. This course gives a foundation in the Internet of Things, including the components, tools, and analysis by teaching the concepts behind the IoT and a look at real-world solutions.

List of Experiments (Indicative)

1	Start Raspberry Pi and try various Linux commands in command terminal window	2 lab hour s
2	Read your name and print Hello message with name.	2 lab
3	Read two numbers and print their sum, difference, product and division.	hour s
4	Word and character count of a given string	
5	Area of a given shape (rectangle, triangle and circle) reading shape and appropriate values from standard input	2 lab
6	Print a name 'n' times, where name and n are read from standard input, using for and while loops.	hour s
7	Handle Divided by Zero Exception.	
8	Print current time for 10 times with an interval of 10 seconds.	2 lab hour
9	Read a file line by line and print the word count of each line.	S
10	To interface LED/Buzzer with Arduino/Raspberry PiandwriteaprogramtoturnONLEDfor1 secafterevery2 seconds.	2 lab hour s
11	Switch on a relay at a given time using cron, where the relay's contact terminals are connected to a load.	2 lab hour s
12	To install MySQL database on Raspberry Pi and perform basic SQL queries.	2 lab hour s
13	Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.	2 lab hour s

14	Write a program on Arduino/Raspberry Pitosubscribeto MQTT broker for temperature data and print it.	2 lab hour s
15	WriteaprogramtocreateTCPserveronArduino/RaspberryPiandrespondwithhumidity data to TCP client when requested.	3 lab hour s

Modes of Evaluation: Quiz I/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz I	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs											
	Course Outcomes (COs)	Mapped Program Outcomes										
CO1	Understand IoT and its hardware and software components	PO2										
CO2	Interface I/O devices, sensors and communication mobile.	PO1										
CO3	Remotely monitor data and control devices	PO4										
CO4	Develop real life IoT based projects	PO3										

		Е	P	D	С	M	T	Е	Е	I	С	P	L	S	В	P	Е	A
		n	r	e	О	0	h	n	t	n	О	r	i	k	e	r	t	n
		g	0	S	n	d	e	v	h	d	m	0	f	i	S	0	h	a
		i	b	i	d	e	e	i	i	i	m	j	e	1	t	f	i	1
		n	1	g	u	r	n	r	c	v	u	e	-	1	P	e	c	У
		e	e	n	c	n	g i	0	S	i	n :	c	1	S	r	S	S	S:
		e	m	/ d	t i	t		n		d	i	t	0		a c	s i		i
		r i	a n	e	n	0	n e	m e		u a	c a	m a	n		t	0		S
		n	a	v	V	1	e	n		1	t	n	g L		i	n		
		g	1	e	e	u	r	t		0	i	a	e		c	R		
		K	у	1	s	s	a	a		r	0	g	a		e	e		
		n	S	О	t	a	n	n		t	n	e	r		S	S		
		О	i	p	i	g	d	d		e		m	n			p		
		w	S	m	g	e	S	s		a		e	i			0		
		1		e	a		О	u		m		n	n			n		
		e		n	t		c	S		W		t	g			S		
		d		t	i		i	t		О		a				i		
		g		О	О		e	a		r		n				b		
		e		f	n		t	i		k		d				i		
				S	S		У	n				f				1		
				0	0			a				i				i		
				1	f			b				n				t ·		
				u	c			i				a				i		
				t i	0 m			1 i				n				e s		
				0	m			t				c e				8		
				n	р 1			у										
				S	e			,										
					X													
					p													
					r													
					О													
					b													
					1													
					e													
					m													
					S													
Cour	Cou																	
se	rse	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS	PS
Code	Titl	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	O4	O5
	e																	
		l			l	l						l						

		Inte											
E	ГС	rnet									3		
S	157	of	2	2	3	3					3	2	3
A		Thi											
		ngs											

2= moderately mapped

3=strongly mapped